
Red Hat Enterprise Linux 8

Securing networks

Configuring secured networks and network communication

Last Updated: 2020-01-31

Red Hat Enterprise Linux 8 Securing networks

Configuring secured networks and network communication

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This title assists administrators with securing networks, connected machines, and network
communication against various attacks.

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. USING SECURE COMMUNICATIONS BETWEEN TWO SYSTEMS WITH OPENSSH
1.1. SSH AND OPENSSH
1.2. CONFIGURING AND STARTING AN OPENSSH SERVER
1.3. USING KEY PAIRS INSTEAD OF PASSWORDS FOR SSH AUTHENTICATION

1.3.1. Setting an OpenSSH server for key-based authentication
1.3.2. Generating SSH key pairs

1.4. USING SSH KEYS STORED ON A SMART CARD
1.5. MAKING OPENSSH MORE SECURE
1.6. CONNECTING TO A REMOTE SERVER USING AN SSH JUMP HOST
1.7. ADDITIONAL RESOURCES

CHAPTER 2. PLANNING AND IMPLEMENTING TLS
2.1. SSL AND TLS PROTOCOLS
2.2. SECURITY CONSIDERATIONS FOR TLS IN RHEL 8

2.2.1. Protocols
2.2.2. Cipher suites
2.2.3. Public key length

2.3. HARDENING TLS CONFIGURATION IN APPLICATIONS
2.3.1. Configuring the Apache HTTP server
2.3.2. Configuring the Nginx HTTP and proxy server
2.3.3. Configuring the Dovecot mail server

CHAPTER 3. CONFIGURING A VPN WITH IPSEC
3.1. LIBRESWAN AS AN IPSEC VPN IMPLEMENTATION
3.2. INSTALLING LIBRESWAN
3.3. CREATING A HOST-TO-HOST VPN
3.4. CONFIGURING A SITE-TO-SITE VPN
3.5. CONFIGURING A REMOTE ACCESS VPN
3.6. CONFIGURING A MESH VPN
3.7. METHODS OF AUTHENTICATION USED IN LIBRESWAN
3.8. DEPLOYING A FIPS-COMPLIANT IPSEC VPN
3.9. RELATED INFORMATION

CHAPTER 4. CONFIGURING MACSEC
4.1. INTRODUCTION TO MACSEC
4.2. USING MACSEC WITH NMCLI TOOL
4.3. USING MACSEC WITH WPA_SUPPLICANT
4.4. RELATED INFORMATION

CHAPTER 5. USING AND CONFIGURING FIREWALLS
5.1. GETTING STARTED WITH FIREWALLD

5.1.1. firewalld
5.1.2. Zones
5.1.3. Predefined services

5.2. INSTALLING THE FIREWALL-CONFIG GUI CONFIGURATION TOOL
5.3. VIEWING THE CURRENT STATUS AND SETTINGS OF FIREWALLD

5.3.1. Viewing the current status of firewalld
5.3.2. Viewing current firewalld settings

5.3.2.1. Viewing allowed services using GUI
5.3.2.2. Viewing firewalld settings using CLI

5

6
6
7
8
8
9

10
12
14
15

17
17
17
18
18
18
19
19

20
20

22
22
23
23
24
25
26
28
29
32

33
33
33
33
34

35
35
35
35
36
37
37
37
38
38
38

Table of Contents

1

5.4. STARTING FIREWALLD
5.5. STOPPING FIREWALLD
5.6. RUNTIME AND PERMANENT SETTINGS
5.7. VERIFYING THE PERMANENT FIREWALLD CONFIGURATION
5.8. CONTROLLING NETWORK TRAFFIC USING FIREWALLD

5.8.1. Disabling all traffic in case of emergency using CLI
5.8.2. Controlling traffic with predefined services using CLI
5.8.3. Controlling traffic with predefined services using GUI
5.8.4. Adding new services
5.8.5. Controlling ports using CLI

5.8.5.1. Opening a port
5.8.5.2. Closing a port

5.8.6. Opening ports using GUI
5.8.7. Controlling traffic with protocols using GUI
5.8.8. Opening source ports using GUI

5.9. WORKING WITH FIREWALLD ZONES
5.9.1. Listing zones
5.9.2. Modifying firewalld settings for a certain zone
5.9.3. Changing the default zone
5.9.4. Assigning a network interface to a zone
5.9.5. Assigning a default zone to a network connection
5.9.6. Creating a new zone
5.9.7. Zone configuration files
5.9.8. Using zone targets to set default behavior for incoming traffic

5.10. USING ZONES TO MANAGE INCOMING TRAFFIC DEPENDING ON A SOURCE
5.10.1. Using zones to manage incoming traffic depending on a source
5.10.2. Adding a source
5.10.3. Removing a source
5.10.4. Adding a source port
5.10.5. Removing a source port
5.10.6. Using zones and sources to allow a service for only a specific domain
5.10.7. Configuring traffic accepted by a zone based on a protocol

5.10.7.1. Adding a protocol to a zone
5.10.7.2. Removing a protocol from a zone

5.11. CONFIGURING IP ADDRESS MASQUERADING
5.12. PORT FORWARDING

5.12.1. Adding a port to redirect
5.12.2. Redirecting TCP port 80 to port 88 on the same machine
5.12.3. Removing a redirected port
5.12.4. Removing TCP port 80 forwarded to port 88 on the same machine

5.13. MANAGING ICMP REQUESTS
5.13.1. Listing and blocking ICMP requests
5.13.2. Configuring the ICMP filter using GUI

5.14. SETTING AND CONTROLLING IP SETS USING FIREWALLD
5.14.1. Configuring IP set options using CLI

5.15. PRIORITIZING RICH RULES
5.15.1. How the priority parameter organizes rules into different chains
5.15.2. Setting the priority of a rich rule

5.16. CONFIGURING FIREWALL LOCKDOWN
5.16.1. Configuring lockdown with using CLI
5.16.2. Configuring lockdown whitelist options using CLI
5.16.3. Configuring lockdown whitelist options using configuration files

5.17. LOG FOR DENIED PACKETS

39
40
40
41
41
41

42
42
43
43
44
44
45
45
45
45
45
46
46
46
47
47
48
48
48
49
49
49
50
50
50
51
51
51
51
52
52
52
53
53
54
54
56
56
56
58
58
58
59
59
59
61

62

Red Hat Enterprise Linux 8 Securing networks

2

. .

5.18. RELATED INFORMATION
Installed documentation
Online documentation

CHAPTER 6. GETTING STARTED WITH NFTABLES
6.1. INTRODUCTION TO NFTABLES
6.2. WHEN TO USE FIREWALLD, NFTABLES, OR IPTABLES
6.3. CONVERTING IPTABLES RULES TO NFTABLES RULES
6.4. WRITING AND EXECUTING NFTABLES SCRIPTS

6.4.1. The required script header in nftables script
6.4.2. Supported nftables script formats
6.4.3. Running nftables scripts
6.4.4. Using comments in nftables scripts
6.4.5. Using variables in an nftables script

Variables with a single value
Variables that contain an anonymous set

6.4.6. Including files in an nftables script
6.4.7. Automatically loading nftables rules when the system boots

6.5. DISPLAYING NFTABLES RULE SETS
6.6. CREATING AN NFTABLES TABLE
6.7. CREATING AN NFTABLES CHAIN
6.8. ADDING A RULE TO AN NFTABLES CHAIN
6.9. INSERTING A RULE INTO AN NFTABLES CHAIN
6.10. CONFIGURING NAT USING NFTABLES

6.10.1. The different NAT types: masquerading, source NAT, and destination NAT
6.10.2. Configuring masquerading using nftables
6.10.3. Configuring source NAT using nftables
6.10.4. Configuring destination NAT using nftables

6.11. USING SETS IN NFTABLES COMMANDS
6.11.1. Using an anonymous sets in nftables
6.11.2. Using named sets in nftables
6.11.3. Related information

6.12. USING VERDICT MAPS IN NFTABLES COMMANDS
6.12.1. Using literal maps in nftables
6.12.2. Using mutable verdict maps in nftables
6.12.3. Related information

6.13. CONFIGURING PORT FORWARDING USING NFTABLES
6.13.1. Forwarding incoming packets to a different local port
6.13.2. Forwarding incoming packets on a specific local port to a different host

6.14. LIMITING THE NUMBER OF CONNECTIONS USING NFTABLES
6.15. BLOCKING IP ADDRESSES THAT ATTEMPT MORE THAN TEN NEW INCOMING TCP CONNECTIONS
WITHIN ONE MINUTE
6.16. DEBUGGING NFTABLES RULES

6.16.1. Creating a rule with a counter
6.16.2. Adding a counter to an existing rule
6.16.3. Monitoring packets that match an existing rule

6.17. BACKING UP AND RESTORING NFTABLES RULE SETS
6.17.1. Backing up nftables rule sets to a file
6.17.2. Restoring nftables rule sets from a file

6.18. RELATED INFORMATION

62
62
63

64
64
64
64
65
65
66
66
67
67
67
68
68
69
69
70
70
71
72
73
73
73
74
75
76
76
76
77
78
78
79
81
81
81
81

82

83
83
84
84
85
86
86
86
87

Table of Contents

3

Red Hat Enterprise Linux 8 Securing networks

4

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Please let us know how we could make it better. To do
so:

For simple comments on specific passages:

1. Make sure you are viewing the documentation in the Multi-page HTML format. In addition,
ensure you see the Feedback button in the upper right corner of the document.

2. Use your mouse cursor to highlight the part of text that you want to comment on.

3. Click the Add Feedback pop-up that appears below the highlighted text.

4. Follow the displayed instructions.

For submitting more complex feedback, create a Bugzilla ticket:

1. Go to the Bugzilla website.

2. As the Component, use Documentation.

3. Fill in the Description field with your suggestion for improvement. Include a link to the
relevant part(s) of documentation.

4. Click Submit Bug.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

5

https://bugzilla.redhat.com/enter_bug.cgi?product=Red Hat Enterprise Linux 8

CHAPTER 1. USING SECURE COMMUNICATIONS BETWEEN
TWO SYSTEMS WITH OPENSSH

SSH (Secure Shell) is a protocol which provides secure communications between two systems using a
client-server architecture and allows users to log in to server host systems remotely. Unlike other
remote communication protocols, such as FTP or Telnet, SSH encrypts the login session, which prevents
intruders to collect unencrypted passwords from the connection.

Red Hat Enterprise Linux includes the basic OpenSSH packages: the general openssh package, the
openssh-server package and the openssh-clients package. Note that the OpenSSH packages require
the OpenSSL package openssl-libs, which installs several important cryptographic libraries that enable
OpenSSH to provide encrypted communications.

1.1. SSH AND OPENSSH

SSH (Secure Shell) is a program for logging into a remote machine and executing commands on that
machine. The SSH protocol provides secure encrypted communications between two untrusted hosts
over an insecure network. You can also forward X11 connections and arbitrary TCP/IP ports over the
secure channel.

The SSH protocol mitigates security threats, such as interception of communication between two
systems and impersonation of a particular host, when you use it for remote shell login or file copying.
This is because the SSH client and server use digital signatures to verify their identities. Additionally, all
communication between the client and server systems is encrypted.

OpenSSH is an implementation of the SSH protocol supported by a number of Linux, UNIX, and similar
operating systems. It includes the core files necessary for both the OpenSSH client and server. The
OpenSSH suite consists of the following user-space tools:

ssh is a remote login program (SSH client)

sshd is an OpenSSH SSH daemon

scp is a secure remote file copy program

sftp is a secure file transfer program

ssh-agent is an authentication agent for caching private keys

ssh-add adds private key identities to ssh-agent

ssh-keygen generates, manages, and converts authentication keys for ssh

ssh-copy-id is a script that adds local public keys to the authorized_keys file on a remote SSH
server

ssh-keyscan - gathers SSH public host keys

Two versions of SSH currently exist: version 1, and the newer version 2. The OpenSSH suite in Red Hat
Enterprise Linux 8 supports only SSH version 2, which has an enhanced key-exchange algorithm not
vulnerable to known exploits in version 1.

OpenSSH, as one of the RHEL core cryptographic subsystems uses system-wide crypto policies. This
ensures that weak cipher suites and cryptographic algorithms are disabled in the default configuration.
To adjust the policy, the administrator must either use the update-crypto-policies command to make
settings stricter or looser or manually opt-out of the system-wide crypto policies.

Red Hat Enterprise Linux 8 Securing networks

6

The OpenSSH suite uses two different sets of configuration files: those for client programs (that is, ssh,
scp, and sftp), and those for the server (the sshd daemon). System-wide SSH configuration
information is stored in the /etc/ssh/ directory. User-specific SSH configuration information is stored in
~/.ssh/ in the user’s home directory. For a detailed list of OpenSSH configuration files, see the FILES
section in the sshd(8) man page.

Additional resources

Man pages for the ssh topic listed by the man -k ssh command.

Using system-wide cryptographic policies .

1.2. CONFIGURING AND STARTING AN OPENSSH SERVER

Use the following procedure for a basic configuration that might be required for your environment and
for starting an OpenSSH server. Note that after the default RHEL installation, the sshd daemon is
already started and server host keys are automatically created.

Prerequisites

The openssh-server package is installed.

Procedure

1. Start the sshd daemon in the current session and set it to start automatically at boot time:

systemctl start sshd
systemctl enable sshd

2. To specify different addresses than the default 0.0.0.0 (IPv4) or :: (IPv6) for the
ListenAddress directive in the /etc/ssh/sshd_config configuration file and to use a slower
dynamic network configuration, add the dependency on the network-online.target target unit
to the sshd.service unit file. To achieve this, create the
/etc/systemd/system/sshd.service.d/local.conf file with the following content:

[Unit]
Wants=network-online.target
After=network-online.target

3. Review if OpenSSH server settings in the /etc/ssh/sshd_config configuration file meet the
requirements of your scenario.

4. Optionally, change the welcome message that your OpenSSH server displays before a client
authenticates by editing the /etc/issue file, for example:

Welcome to ssh-server.example.com
Warning: By accessing this server, you agree to the referenced terms and conditions.

Note that to change the message displayed after a successful login you have to edit the
/etc/motd file on the server. See the pam_motd man page for more information.

5. Reload the systemd configuration to apply the changes:

systemctl daemon-reload

CHAPTER 1. USING SECURE COMMUNICATIONS BETWEEN TWO SYSTEMS WITH OPENSSH

7

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening

Verification steps

1. Check that the sshd daemon is running:

systemctl status sshd
● sshd.service - OpenSSH server daemon
 Loaded: loaded (/usr/lib/systemd/system/sshd.service; enabled; vendor preset: enabled)
 Active: active (running) since Mon 2019-11-18 14:59:58 CET; 6min ago
 Docs: man:sshd(8)
 man:sshd_config(5)
 Main PID: 1149 (sshd)
 Tasks: 1 (limit: 11491)
 Memory: 1.9M
 CGroup: /system.slice/sshd.service
 └─1149 /usr/sbin/sshd -D -oCiphers=aes128-ctr,aes256-ctr,aes128-cbc,aes256-cbc -
oMACs=hmac-sha2-256,>

Nov 18 14:59:58 ssh-server-example.com systemd[1]: Starting OpenSSH server daemon...
Nov 18 14:59:58 ssh-server-example.com sshd[1149]: Server listening on 0.0.0.0 port 22.
Nov 18 14:59:58 ssh-server-example.com sshd[1149]: Server listening on :: port 22.
Nov 18 14:59:58 ssh-server-example.com systemd[1]: Started OpenSSH server daemon.

2. Connect to the SSH server with an SSH client.

ssh user@ssh-server-example.com
ECDSA key fingerprint is SHA256:dXbaS0RG/UzlTTku8GtXSz0S1++lPegSy31v3L/FAEc.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added 'ssh-server-example.com' (ECDSA) to the list of known hosts.

user@ssh-server-example.com's password:

Additional resources

sshd(8) and sshd_config(5) man pages

1.3. USING KEY PAIRS INSTEAD OF PASSWORDS FOR SSH
AUTHENTICATION

To improve system security even further, generate SSH key pairs and then enforce key-based
authentication by disabling password authentication.

1.3.1. Setting an OpenSSH server for key-based authentication

Follow these steps to configure your OpenSSH server for enforcing key-based authentication.

Prerequisites

The openssh-server package is installed.

The sshd daemon is running on the server.

Procedure

1. Open the /etc/ssh/sshd_config configuration in a text editor, for example:

Red Hat Enterprise Linux 8 Securing networks

8

vi /etc/ssh/sshd_config

2. Change the PasswordAuthentication option to no:

PasswordAuthentication no

On a system other than a new default installation, check that PubkeyAuthentication no has not
been set and the ChallengeResponseAuthentication directive is set to no. If you are
connected remotely, not using console or out-of-band access, test the key-based login process
before disabling password authentication.

3. To use key-based authentication with NFS-mounted home directories, enable the
use_nfs_home_dirs SELinux boolean:

setsebool -P use_nfs_home_dirs 1

4. Reload the sshd daemon to apply the changes:

systemctl reload sshd

Additional resources

sshd(8), sshd_config(5), and setsebool(8) man pages

1.3.2. Generating SSH key pairs

Use this procedure to generate an SSH key pair on a local system and to copy the generated public key
to an OpenSSH server. If the server is configured accordingly, you can log in to the OpenSSH server
without providing any password.

IMPORTANT

If you complete the following steps as root, only root is able to use the keys.

Procedure

1. To generate an ECDSA key pair for version 2 of the SSH protocol:

$ ssh-keygen -t ecdsa
Generating public/private ecdsa key pair.
Enter file in which to save the key (/home/joesec/.ssh/id_ecdsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/joesec/.ssh/id_ecdsa.
Your public key has been saved in /home/joesec/.ssh/id_ecdsa.pub.
The key fingerprint is:
SHA256:Q/x+qms4j7PCQ0qFd09iZEFHA+SqwBKRNaU72oZfaCI
joesec@localhost.example.com
The key's randomart image is:
+---[ECDSA 256]---+
|.oo..o=++ |
|.. o .oo . |
|. .. o. o |

CHAPTER 1. USING SECURE COMMUNICATIONS BETWEEN TWO SYSTEMS WITH OPENSSH

9

|....o.+... |
|o.oo.o +S . |
|.=.+. .o |
|E.*+. . . . |
|.=..+ +.. o |
| . oo*+o. |
+----[SHA256]-----+

You can also generate an RSA key pair by using the -t rsa option with the ssh-keygen
command or an Ed25519 key pair by entering the ssh-keygen -t ed25519 command.

2. To copy the public key to a remote machine:

$ ssh-copy-id joesec@ssh-server-example.com
/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out any that are
already installed
...
Number of key(s) added: 1

Now try logging into the machine, with: "ssh 'joesec@ssh-server-example.com'" and check to
make sure that only the key(s) you wanted were added.

If you do not use the ssh-agent program in your session, the previous command copies the
most recently modified ~/.ssh/id*.pub public key if it is not yet installed. To specify another
public-key file or to prioritize keys in files over keys cached in memory by ssh-agent, use the
ssh-copy-id command with the -i option.

NOTE

If you reinstall your system and want to keep previously generated key pairs, back up the
~/.ssh/ directory. After reinstalling, copy it back to your home directory. You can do this
for all users on your system, including root.

Verification steps

1. Log in to the OpenSSH server without providing any password:

$ ssh joesec@ssh-server-example.com
Welcome message.
...
Last login: Mon Nov 18 18:28:42 2019 from ::1

Additional resources

ssh-keygen(1) and ssh-copy-id(1) man pages

1.4. USING SSH KEYS STORED ON A SMART CARD

Red Hat Enterprise Linux 8 enables you to use RSA and ECDSA keys stored on a smart card on
OpenSSH clients. Use this procedure to enable authentication using a smart card instead of using a
password.

Prerequisites

Red Hat Enterprise Linux 8 Securing networks

10

On the client side, the opensc package is installed and the pcscd service is running.

Procedure

1. List all keys provided by the OpenSC PKCS #11 module including their PKCS #11 URIs and save
the output to the keys.pub file:

$ ssh-keygen -D pkcs11: > keys.pub
$ ssh-keygen -D pkcs11:
ssh-rsa AAAAB3NzaC1yc2E...KKZMzcQZzx
pkcs11:id=%02;object=SIGN%20pubkey;token=SSH%20key;manufacturer=piv_II?module-
path=/usr/lib64/pkcs11/opensc-pkcs11.so
ecdsa-sha2-nistp256 AAA...J0hkYnnsM=
pkcs11:id=%01;object=PIV%20AUTH%20pubkey;token=SSH%20key;manufacturer=piv_II?
module-path=/usr/lib64/pkcs11/opensc-pkcs11.so

2. To enable authentication using a smart card on a remote server (example.com), transfer the
public key to the remote server. Use the ssh-copy-id command with keys.pub created in the
previous step:

$ ssh-copy-id -f -i keys.pub username@example.com

3. To connect to example.com using the ECDSA key from the output of the ssh-keygen -D
command in step 1, you can use just a subset of the URI, which uniquely references your key, for
example:

$ ssh -i "pkcs11:id=%01?module-path=/usr/lib64/pkcs11/opensc-pkcs11.so" example.com
Enter PIN for 'SSH key':
[example.com] $

4. You can use the same URI string in the ~/.ssh/config file to make the configuration permanent:

$ cat ~/.ssh/config
IdentityFile "pkcs11:id=%01?module-path=/usr/lib64/pkcs11/opensc-pkcs11.so"
$ ssh example.com
Enter PIN for 'SSH key':
[example.com] $

Because OpenSSH uses the p11-kit-proxy wrapper and the OpenSC PKCS #11 module is
registered to PKCS#11 Kit, you can simplify the previous commands:

$ ssh -i "pkcs11:id=%01" example.com
Enter PIN for 'SSH key':
[example.com] $

If you skip the id= part of a PKCS #11 URI, OpenSSH loads all keys that are available in the proxy module.
This can reduce the amount of typing required:

$ ssh -i pkcs11: example.com
Enter PIN for 'SSH key':
[example.com] $

Additional resources

CHAPTER 1. USING SECURE COMMUNICATIONS BETWEEN TWO SYSTEMS WITH OPENSSH

11

Fedora 28: Better smart card support in OpenSSH

p11-kit(8) man page

ssh(1) man page

ssh-keygen(1) man page

opensc.conf(5) man page

pcscd(8) man page

1.5. MAKING OPENSSH MORE SECURE

The following tips help you to increase security when using OpenSSH. Note that changes in the
/etc/ssh/sshd_config OpenSSH configuration file require reloading the sshd daemon to take effect:

systemctl reload sshd

IMPORTANT

The majority of security hardening configuration changes reduce compatibility with
clients that do not support up-to-date algorithms or cipher suites.

Disabling insecure connection protocols

To make SSH truly effective, prevent the use of insecure connection protocols that are replaced
by the OpenSSH suite. Otherwise, a user’s password might be protected using SSH for one
session only to be captured later when logging in using Telnet. For this reason, consider
disabling insecure protocols, such as telnet, rsh, rlogin, and ftp.

Enabling key-based authentication and disabling password-based authentication

Disabling passwords for authentication and allowing only key pairs reduces the attack surface
and it also might save users’ time. On clients, generate key pairs using the ssh-keygen tool and
use the ssh-copy-id utility to copy public keys from clients on the OpenSSH server. To disable
password-based authentication on your OpenSSH server, edit /etc/ssh/sshd_config and
change the PasswordAuthentication option to no:

PasswordAuthentication no

Key types

Although the ssh-keygen command generates a pair of RSA keys by default, you can instruct it
to generate ECDSA or Ed25519 keys by using the -t option. The ECDSA (Elliptic Curve Digital
Signature Algorithm) offers better performance than RSA at the equivalent symmetric key
strength. It also generates shorter keys. The Ed25519 public-key algorithm is an implementation
of twisted Edwards curves that is more secure and also faster than RSA, DSA, and ECDSA.
OpenSSH creates RSA, ECDSA, and Ed25519 server host keys automatically if they are missing.
To configure the host key creation in RHEL 8, use the sshd-keygen@.service instantiated
service. For example, to disable the automatic creation of the RSA key type:

systemctl mask sshd-keygen@rsa.service

Red Hat Enterprise Linux 8 Securing networks

12

https://fedoramagazine.org/fedora-28-better-smart-card-support-openssh/

To exclude particular key types for SSH connections, comment out the relevant lines in
/etc/ssh/sshd_config, and reload the sshd service. For example, to allow only Ed25519 host
keys:

HostKey /etc/ssh/ssh_host_rsa_key
HostKey /etc/ssh/ssh_host_ecdsa_key
HostKey /etc/ssh/ssh_host_ed25519_key

Non-default port

By default, the sshd daemon listens on TCP port 22. Changing the port reduces the exposure
of the system to attacks based on automated network scanning and thus increase security
through obscurity. You can specify the port using the Port directive in the
/etc/ssh/sshd_config configuration file.
You also have to update the default SELinux policy to allow the use of a non-default port. To do
so, use the semanage tool from the policycoreutils-python-utils package:

semanage port -a -t ssh_port_t -p tcp port_number

Furthermore, update firewalld configuration:

firewall-cmd --add-port port_number/tcp
firewall-cmd --runtime-to-permanent

In the previous commands, replace port_number with the new port number specified using the
Port directive.

No root login

If your particular use case does not require the possibility of logging in as the root user, you
should consider setting the PermitRootLogin configuration directive to no in the
/etc/ssh/sshd_config file. By disabling the possibility of logging in as the root user, the
administrator can audit which users run what privileged commands after they log in as regular
users and then gain root rights.
Alternatively, set PermitRootLogin to prohibit-password:

PermitRootLogin prohibit-password

This enforces the use of key-based authentication instead of the use of passwords for logging
in as root and reduces risks by preventing brute-force attacks.

Using the X Security extension

The X server in Red Hat Enterprise Linux clients does not provide the X Security extension.
Therefore, clients cannot request another security layer when connecting to untrusted SSH
servers with X11 forwarding. Most applications are not able to run with this extension enabled
anyway.
By default, the ForwardX11Trusted option in the /etc/ssh/ssh_config.d/05-redhat.conf file is
set to yes, and there is no difference between the ssh -X remote_machine (untrusted host)
and ssh -Y remote_machine (trusted host) command.

If your scenario does not require the X11 forwarding feature at all, set the X11Forwarding
directive in the /etc/ssh/sshd_config configuration file to no.

CHAPTER 1. USING SECURE COMMUNICATIONS BETWEEN TWO SYSTEMS WITH OPENSSH

13

Restricting access to specific users, groups, or domains

The AllowUsers and AllowGroups directives in the /etc/ssh/sshd_config configuration file
server enable you to permit only certain users, domains, or groups to connect to your OpenSSH
server. You can combine AllowUsers and AllowGroups to restrict access more precisely, for
example:

AllowUsers *@192.168.1.*,*@10.0.0.*,!*@192.168.1.2
AllowGroups example-group

The previous configuration lines accept connections from all users from systems in 192.168.1.*
and 10.0.0.* subnets except from the system with the 192.168.1.2 address. All users must be in
the example-group group. The OpenSSH server denies all other connections.

Note that using whitelists (directives starting with Allow) is more secure than using blacklists
(options starting with Deny) because whitelists block also new unauthorized users or groups.

Changing system-wide cryptographic policies

OpenSSH uses RHEL system-wide cryptographic policies, and the default system-wide
cryptographic policy level offers secure settings for current threat models. To make your
cryptographic settings more strict, change the current policy level:

update-crypto-policies --set FUTURE
Setting system policy to FUTURE

To opt-out of the system-wide crypto policies for your OpenSSH server, uncomment the line
with the CRYPTO_POLICY= variable in the /etc/sysconfig/sshd file. After this change, values
that you specify in the Ciphers, MACs, KexAlgoritms, and GSSAPIKexAlgorithms sections in
the /etc/ssh/sshd_config file are not overridden. Note that this task requires deep expertise in
configuring cryptographic options.

See Using system-wide cryptographic policies in the RHEL 8 Security hardening title for more
information.

Additional resources

sshd_config(5), ssh-keygen(1), crypto-policies(7), and update-crypto-policies(8) man pages

1.6. CONNECTING TO A REMOTE SERVER USING AN SSH JUMP HOST

Use this procedure for connecting to a remote server through an intermediary server, also called jump
host.

Prerequisites

A jump host accepts SSH connections from your system.

A remote server accepts SSH connections only from the jump host.

Procedure

1. Define the jump host by editing the ~/.ssh/config file, for example:

Red Hat Enterprise Linux 8 Securing networks

14

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/

Host jump-server1
 HostName jump1.example.com

2. Add the remote server jump configuration with the ProxyJump directive to ~/.ssh/config, for
example:

Host remote-server
 HostName remote1.example.com
 ProxyJump jump-server1

3. Connect to the remote server through the jump server:

$ ssh remote-server

The previous command is equivalent to the ssh -J jump-server1 remote-server command if
you omit the configuration steps 1 and 2.

NOTE

You can specify more jump servers and you can also skip adding host definitions to the
configurations file when you provide their complete host names, for example:

$ ssh -J jump1.example.com,jump2.example.com,jump3.example.com
remote1.example.com

Change the host name-only notation in the previous command if the user names or SSH
ports on the jump servers differ from the names and ports on the remote server, for
example:

$ ssh -J
johndoe@jump1.example.com:75,johndoe@jump2.example.com:75,johndoe@jump3.e
xample.com:75 joesec@remote1.example.com:220

Additional resources

ssh_config(5) and ssh(1) man pages

1.7. ADDITIONAL RESOURCES

For more information on configuring and connecting to OpenSSH servers and clients on Red Hat
Enterprise Linux, see the resources listed below.

Installed documentation

sshd(8) man page documents available command-line options and provides a complete list of
supported configuration files and directories.

ssh(1) man page provides a complete list of available command-line options and supported
configuration files and directories.

scp(1) man page provides a more detailed description of the scp utility and its usage.

sftp(1) man page provides a more detailed description of the sftp utility and its usage.

CHAPTER 1. USING SECURE COMMUNICATIONS BETWEEN TWO SYSTEMS WITH OPENSSH

15

ssh-keygen(1) man page documents in detail the use of the ssh-keygen utility to generate,
manage, and convert authentication keys used by ssh.

ssh-copy-id(1) man page describes the use of the ssh-copy-id script.

ssh_config(5) man page documents available SSH client configuration options.

sshd_config(5) man page provides a full description of available SSH daemon configuration
options.

update-crypto-policies(8) man page provides guidance on managing system-wide
cryptographic policies

crypto-policies(7) man page provides an overview of system-wide cryptographic policy levels

Online documentation

OpenSSH Home Page - contains further documentation, frequently asked questions, links to
the mailing lists, bug reports, and other useful resources.

Configuring SELinux for applications and services with non-standard configurations - you can
apply analogous procedures for OpenSSH in a non-standard configuration with SELinux in
enforcing mode.

Controlling network traffic using firewalld - provides guidance on updating firewalld settings
after changing an SSH port

Red Hat Enterprise Linux 8 Securing networks

16

http://www.openssh.com/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/using_selinux/index#configuring-selinux-for-applications-and-services-with-non-standard-configurations_using-selinux
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/securing_networks/index#controlling-network-traffic-using-firewalld_using-and-configuring-firewalls

CHAPTER 2. PLANNING AND IMPLEMENTING TLS
TLS (Transport Layer Security) is a cryptographic protocol used to secure network communications.
When hardening system security settings by configuring preferred key-exchange protocols,
authentication methods, and encryption algorithms, it is necessary to bear in mind that the broader the
range of supported clients, the lower the resulting security. Conversely, strict security settings lead to
limited compatibility with clients, which can result in some users being locked out of the system. Be sure
to target the strictest available configuration and only relax it when it is required for compatibility
reasons.

2.1. SSL AND TLS PROTOCOLS

The Secure Sockets Layer (SSL) protocol was originally developed by Netscape Corporation to provide
a mechanism for secure communication over the Internet. Subsequently, the protocol was adopted by
the Internet Engineering Task Force (IETF) and renamed to Transport Layer Security (TLS).

The TLS protocol sits between an application protocol layer and a reliable transport layer, such as
TCP/IP. It is independent of the application protocol and can thus be layered underneath many different
protocols, for example: HTTP, FTP, SMTP, and so on.

Protocol version Usage recommendation

SSL v2 Do not use. Has serious security vulnerabilities. Removed from the core crypto libraries
since RHEL 7.

SSL v3 Do not use. Has serious security vulnerabilities. Removed from the core crypto libraries
since RHEL 8.

TLS 1.0 Not recommended to use. Has known issues that cannot be mitigated in a way that
guarantees interoperability, and does not support modern cipher suites. Enabled only in
the LEGACY system-wide cryptographic policy profile.

TLS 1.1 Use for interoperability purposes where needed. Does not support modern cipher suites.
Enabled only in the LEGACY policy.

TLS 1.2 Supports the modern AEAD cipher suites. This version is enabled in all system-wide
crypto policies, but optional parts of this protocol contain vulnerabilities and TLS 1.2 also
allows outdated algorithms.

TLS 1.3 Recommended version. TLS 1.3 removes known problematic options, provides
additional privacy by encrypting more of the negotiation handshake and can be faster
thanks usage of more efficient modern cryptographic algorithms. TLS 1.3 is also
enabled in all system-wide crypto policies.

Additional resources

IETF: The Transport Layer Security (TLS) Protocol Version 1.3

2.2. SECURITY CONSIDERATIONS FOR TLS IN RHEL 8

In RHEL 8, cryptography-related considerations are significantly simplified thanks to the system-wide

CHAPTER 2. PLANNING AND IMPLEMENTING TLS

17

https://tools.ietf.org/html/rfc8446

crypto policies. The DEFAULT crypto policy allows only TLS 1.2 and 1.3. To allow your system to
negotiate connections using the earlier versions of TLS, you need to either opt out from following crypto
policies in an application or switch to the LEGACY policy with the update-crypto-policies command.
See Using system-wide cryptographic policies for more information.

The default settings provided by libraries included in RHEL 8 are secure enough for most deployments.
The TLS implementations use secure algorithms where possible while not preventing connections from
or to legacy clients or servers. Apply hardened settings in environments with strict security requirements
where legacy clients or servers that do not support secure algorithms or protocols are not expected or
allowed to connect.

The most straightforward way to harden your TLS configuration is switching the system-wide
cryptographic policy level to FUTURE using the update-crypto-policies --set FUTURE command.

If you decide to not follow RHEL system-wide crypto policies, use the following recommendations for
preferred protocols, cipher suites, and key lengths on your custom configuration:

2.2.1. Protocols

The latest version of TLS provides the best security mechanism. Unless you have a compelling reason to
include support for older versions of TLS, allow your systems to negotiate connections using at least
TLS version 1.2. Note that despite that RHEL 8 supports TLS version 1.3, not all features of this protocol
are fully supported by RHEL 8 components. For example, the 0-RTT (Zero Round Trip Time) feature,
which reduces connection latency, is not yet fully supported by Apache or Nginx web servers.

2.2.2. Cipher suites

Modern, more secure cipher suites should be preferred to old, insecure ones. Always disable the use of
eNULL and aNULL cipher suites, which do not offer any encryption or authentication at all. If at all
possible, ciphers suites based on RC4 or HMAC-MD5, which have serious shortcomings, should also be
disabled. The same applies to the so-called export cipher suites, which have been intentionally made
weaker, and thus are easy to break.

While not immediately insecure, cipher suites that offer less than 128 bits of security should not be
considered for their short useful life. Algorithms that use 128 bits of security or more can be expected to
be unbreakable for at least several years, and are thus strongly recommended. Note that while 3DES
ciphers advertise the use of 168 bits, they actually offer 112 bits of security.

Always give preference to cipher suites that support (perfect) forward secrecy (PFS), which ensures the
confidentiality of encrypted data even in case the server key is compromised. This rules out the fast
RSA key exchange, but allows for the use of ECDHE and DHE. Of the two, ECDHE is the faster and
therefore the preferred choice.

You should also give preference to AEAD ciphers, such as AES-GCM, before CBC-mode ciphers as they
are not vulnerable to padding oracle attacks. Additionally, in many cases, AES-GCM is faster than AES in
CBC mode, especially when the hardware has cryptographic accelerators for AES.

Note also that when using the ECDHE key exchange with ECDSA certificates, the transaction is even
faster than pure RSA key exchange. To provide support for legacy clients, you can install two pairs of
certificates and keys on a server: one with ECDSA keys (for new clients) and one with RSA keys (for
legacy ones).

2.2.3. Public key length

When using RSA keys, always prefer key lengths of at least 3072 bits signed by at least SHA-256, which

Red Hat Enterprise Linux 8 Securing networks

18

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening

When using RSA keys, always prefer key lengths of at least 3072 bits signed by at least SHA-256, which
is sufficiently large for true 128 bits of security.

WARNING

The security of your system is only as strong as the weakest link in the chain. For
example, a strong cipher alone does not guarantee good security. The keys and the
certificates are just as important, as well as the hash functions and keys used by the
Certification Authority (CA) to sign your keys.

Additional resources

System-wide crypto policies in RHEL 8 .

update-crypto-policies(8) man page

2.3. HARDENING TLS CONFIGURATION IN APPLICATIONS

In Red Hat Enterprise Linux 8, system-wide crypto policies provide a convenient way to ensure that your
applications using cryptographic libraries do not allow known insecure protocols, ciphers, or algorithms.

If you want to harden your TLS-related configuration with your customized cryptographic settings, you
can use the cryptographic configuration options described in this section, and override the system-wide
crypto policies just in the minimum required amount.

Regardless of the configuration you choose to use, always make sure to mandate that your server
application enforces server-side cipher order , so that the cipher suite to be used is determined by the
order you configure.

2.3.1. Configuring the Apache HTTP server

The Apache HTTP Server can use both OpenSSL and NSS libraries for its TLS needs. Red Hat
Enterprise Linux 8 provides the mod_ssl functionality through eponymous packages:

yum install mod_ssl

The mod_ssl package installs the /etc/httpd/conf.d/ssl.conf configuration file, which can be used to
modify the TLS-related settings of the Apache HTTP Server.

Install the httpd-manual package to obtain complete documentation for the Apache HTTP Server,
including TLS configuration. The directives available in the /etc/httpd/conf.d/ssl.conf configuration file
are described in detail in /usr/share/httpd/manual/mod/mod_ssl.html. Examples of various settings are
in /usr/share/httpd/manual/ssl/ssl_howto.html.

When modifying the settings in the /etc/httpd/conf.d/ssl.conf configuration file, be sure to consider the
following three directives at the minimum:

SSLProtocol

Use this directive to specify the version of TLS or SSL you want to allow.

SSLCipherSuite

CHAPTER 2. PLANNING AND IMPLEMENTING TLS

19

https://access.redhat.com/articles/3666211
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening
file:///usr/share/httpd/manual/mod/mod_ssl.html
file:///usr/share/httpd/manual/ssl/ssl_howto.html

Use this directive to specify your preferred cipher suite or disable the ones you want to disallow.

SSLHonorCipherOrder

Uncomment and set this directive to on to ensure that the connecting clients adhere to the order of
ciphers you specified.

For example, to use only the TLS 1.2 and 1.3 protocol:

SSLProtocol all -SSLv3 -TLSv1 -TLSv1.1

2.3.2. Configuring the Nginx HTTP and proxy server

To enable TLS 1.3 support in Nginx, add the TLSv1.3 value to the ssl_protocols option in the server
section of the /etc/nginx/nginx.conf configuration file:

server {
 listen 443 ssl http2;
 listen [::]:443 ssl http2;

 ssl_protocols TLSv1.2 TLSv1.3;
 ssl_ciphers

}

2.3.3. Configuring the Dovecot mail server

To configure your installation of the Dovecot mail server to use TLS, modify the
/etc/dovecot/conf.d/10-ssl.conf configuration file. You can find an explanation of some of the basic
configuration directives available in that file in the
/usr/share/doc/dovecot/wiki/SSL.DovecotConfiguration.txt file, which is installed along with the
standard installation of Dovecot.

When modifying the settings in the /etc/dovecot/conf.d/10-ssl.conf configuration file, be sure to
consider the following three directives at the minimum:

ssl_protocols

Use this directive to specify the version of TLS or SSL you want to allow or disable.

ssl_cipher_list

Use this directive to specify your preferred cipher suites or disable the ones you want to disallow.

ssl_prefer_server_ciphers

Uncomment and set this directive to yes to ensure that the connecting clients adhere to the order of
ciphers you specified.

For example, the following line in /etc/dovecot/conf.d/10-ssl.conf allows only TLS 1.1 and later:

ssl_protocols = !SSLv2 !SSLv3 !TLSv1

Additional resources

For more information about TLS configuration and related topics, see the resources listed below.

config(5) man page describes the format of the /etc/ssl/openssl.conf configuration file.

Red Hat Enterprise Linux 8 Securing networks

20

/usr/share/doc/dovecot/wiki/SSL.DovecotConfiguration.txt

ciphers(1) man page includes a list of available OpenSSL keywords and cipher strings.

Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport
Layer Security (DTLS)

Mozilla SSL Configuration Generator can help to create configuration files for Apache or
Nginx with secure settings that disable known vulnerable protocols, ciphers, and hashing
algorithms.

SSL Server Test verifies that your configuration meets modern security requirements.

CHAPTER 2. PLANNING AND IMPLEMENTING TLS

21

https://tools.ietf.org/html/rfc7525
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://www.ssllabs.com/ssltest/

CHAPTER 3. CONFIGURING A VPN WITH IPSEC
In Red Hat Enterprise Linux 8, a virtual private network (VPN) can be configured using the IPsec
protocol, which is supported by the Libreswan application.

3.1. LIBRESWAN AS AN IPSEC VPN IMPLEMENTATION

In Red Hat Enterprise Linux 8, a Virtual Private Network (VPN) can be configured using the IPsec
protocol, which is supported by the Libreswan application. Libreswan is a continuation of the
Openswan application, and many examples from the Openswan documentation are interchangeable
with Libreswan.

The IPsec protocol for a VPN is configured using the Internet Key Exchange (IKE) protocol. The terms
IPsec and IKE are used interchangeably. An IPsec VPN is also called an IKE VPN, IKEv2 VPN, XAUTH
VPN, Cisco VPN or IKE/IPsec VPN. A variant of an IPsec VPN that also uses the Level 2 Tunneling
Protocol (L2TP) is usually called an L2TP/IPsec VPN, which requires the Optional channel xl2tpd
application.

Libreswan is an open-source, user-space IKE implementation. IKE v1 and v2 are implemented as a user-
level daemon. The IKE protocol is also encrypted. The IPsec protocol is implemented by the Linux
kernel, and Libreswan configures the kernel to add and remove VPN tunnel configurations.

The IKE protocol uses UDP port 500 and 4500. The IPsec protocol consists of two protocols:

Encapsulated Security Payload (ESP), which has protocol number 50.

Authenticated Header (AH), which has protocol number 51.

The AH protocol is not recommended for use. Users of AH are recommended to migrate to ESP with
null encryption.

The IPsec protocol provides two modes of operation:

Tunnel Mode (the default)

Transport Mode.

You can configure the kernel with IPsec without IKE. This is called Manual Keying. You can also
configure manual keying using the ip xfrm commands, however, this is strongly discouraged for security
reasons. Libreswan interfaces with the Linux kernel using netlink. Packet encryption and decryption
happen in the Linux kernel.

Libreswan uses the Network Security Services (NSS) cryptographic library. Both Libreswan and NSS
are certified for use with the Federal Information Processing Standard (FIPS) Publication 140-2.

IMPORTANT

IKE/IPsec VPNs, implemented by Libreswan and the Linux kernel, is the only VPN
technology recommended for use in Red Hat Enterprise Linux 8. Do not use any other
VPN technology without understanding the risks of doing so.

In Red Hat Enterprise Linux 8, Libreswan follows system-wide cryptographic policies by default. This
ensures that Libreswan uses secure settings for current threat models including IKEv2 as a default
protocol. See Using system-wide crypto policies for more information.

Libreswan does not use the terms "source" and "destination" or "server" and "client" because IKE/IPsec

Red Hat Enterprise Linux 8 Securing networks

22

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/security_hardening/index#using-the-system-wide-cryptographic-policies_security-hardening

Libreswan does not use the terms "source" and "destination" or "server" and "client" because IKE/IPsec
are peer to peer protocols. Instead, it uses the terms "left" and "right" to refer to end points (the hosts).
This also allows you to use the same configuration on both end points in most cases. However,
administrators usually choose to always use "left" for the local host and "right" for the remote host.

3.2. INSTALLING LIBRESWAN

This procedure describes the steps for installing and starting the Libreswan IPsec/IKE VPN
implementation.

Prerequisites

The AppStream repository is enabled.

Procedure

1. Install the libreswan packages:

yum install libreswan

2. If you are re-installing Libreswan, remove its old database files:

systemctl stop ipsec
rm /etc/ipsec.d/*db

3. Start the ipsec service, and enable the service to be started automatically on boot:

systemctl enable ipsec --now

4. Configure the firewall to allow 500 and 4500/UDP ports for the IKE, ESP, and AH protocols by
adding the ipsec service:

firewall-cmd --add-service="ipsec"
firewall-cmd --runtime-to-permanent

3.3. CREATING A HOST-TO-HOST VPN

To configure Libreswan to create a host-to-host IPsec VPN between two hosts referred to as left and
right, enter the following commands on both of the hosts:

Procedure

1. Generate an RSA key pair on each host:

ipsec newhostkey --output /etc/ipsec.d/hostkey.secrets

2. The previous step returned the generated key’s ckaid. Use that ckaid with the following
command on left, for example:

ipsec showhostkey --left --ckaid 2d3ea57b61c9419dfd6cf43a1eb6cb306c0e857d

The output of the previous command generated the leftrsasigkey= line required for the

CHAPTER 3. CONFIGURING A VPN WITH IPSEC

23

The output of the previous command generated the leftrsasigkey= line required for the
configuration. Do the same on the second host (right):

ipsec showhostkey --right --ckaid a9e1f6ce9ecd3608c24e8f701318383f41798f03

3. In the /etc/ipsec.d/ directory, create a new my_host-to-host.conf file. Write the RSA host keys
from the output of the ipsec showhostkey commands in the previous step to the new file. For
example:

conn mytunnel
 leftid=@west
 left=192.1.2.23
 leftrsasigkey=0sAQOrlo+hOafUZDlCQmXFrje/oZm [...] W2n417C/4urYHQkCvuIQ==
 rightid=@east
 right=192.1.2.45
 rightrsasigkey=0sAQO3fwC6nSSGgt64DWiYZzuHbc4 [...] D/v8t5YTQ==
 authby=rsasig

4. Start ipsec:

ipsec setup start

5. Load the connection:

ipsec auto --add mytunnel

6. Establish the tunnel:

ipsec auto --up mytunnel

7. To automatically start the tunnel when the ipsec service is started, add the following line to the
connection definition:

auto=start

3.4. CONFIGURING A SITE-TO-SITE VPN

To create a site-to-site IPsec VPN, by joining two networks, an IPsec tunnel between the two hosts, is
created. The hosts thus act as the end points, which are configured to permit traffic from one or more
subnets to pass through. Therefore you can think of the host as gateways to the remote portion of the
network.

The configuration of the site-to-site VPN only differs from the host-to-host VPN in that one or more
networks or subnets must be specified in the configuration file.

Prerequisites

A host-to-host VPN is already configured.

Procedure

1. Copy the file with the configuration of your host-to-host VPN to a new file, for example:

Red Hat Enterprise Linux 8 Securing networks

24

cp /etc/ipsec.d/my_host-to-host.conf /etc/ipsec.d/my_site-to-site.conf

2. Add the subnet configuration to the file created in the previous step, for example:

conn mysubnet
 also=mytunnel
 leftsubnet=192.0.1.0/24
 rightsubnet=192.0.2.0/24
 auto=start

conn mysubnet6
 also=mytunnel
 leftsubnet=2001:db8:0:1::/64
 rightsubnet=2001:db8:0:2::/64
 auto=start

the following part of the configuration file is the same for both host-to-host and site-to-site
connections:

conn mytunnel
 leftid=@west
 left=192.1.2.23
 leftrsasigkey=0sAQOrlo+hOafUZDlCQmXFrje/oZm [...] W2n417C/4urYHQkCvuIQ==
 rightid=@east
 right=192.1.2.45
 rightrsasigkey=0sAQO3fwC6nSSGgt64DWiYZzuHbc4 [...] D/v8t5YTQ==
 authby=rsasig

3.5. CONFIGURING A REMOTE ACCESS VPN

Road warriors are traveling users with mobile clients with a dynamically assigned IP address, such as
laptops. The mobile clients authenticate using certificates.

The following example shows configuration for IKEv2, and it avoids using the IKEv1 XAUTH protocol.

On the server:

conn roadwarriors
 ikev2=insist
 # Support (roaming) MOBIKE clients (RFC 4555)
 mobike=yes
 fragmentation=yes
 left=1.2.3.4
 # if access to the LAN is given, enable this, otherwise use 0.0.0.0/0
 # leftsubnet=10.10.0.0/16
 leftsubnet=0.0.0.0/0
 leftcert=gw.example.com
 leftid=%fromcert
 leftxauthserver=yes
 leftmodecfgserver=yes
 right=%any
 # trust our own Certificate Agency
 rightca=%same
 # pick an IP address pool to assign to remote users
 # 100.64.0.0/16 prevents RFC1918 clashes when remote users are behind NAT

CHAPTER 3. CONFIGURING A VPN WITH IPSEC

25

 rightaddresspool=100.64.13.100-100.64.13.254
 # if you want remote clients to use some local DNS zones and servers
 modecfgdns="1.2.3.4, 5.6.7.8"
 modecfgdomains="internal.company.com, corp"
 rightxauthclient=yes
 rightmodecfgclient=yes
 authby=rsasig
 # optionally, run the client X.509 ID through pam to allow/deny client
 # pam-authorize=yes
 # load connection, don't initiate
 auto=add
 # kill vanished roadwarriors
 dpddelay=1m
 dpdtimeout=5m
 dpdaction=clear

On the mobile client, the road warrior’s device, use a slight variation of the previous configuration:

conn to-vpn-server
 ikev2=insist
 # pick up our dynamic IP
 left=%defaultroute
 leftsubnet=0.0.0.0/0
 leftcert=myname.example.com
 leftid=%fromcert
 leftmodecfgclient=yes
 # right can also be a DNS hostname
 right=1.2.3.4
 # if access to the remote LAN is required, enable this, otherwise use 0.0.0.0/0
 # rightsubnet=10.10.0.0/16
 rightsubnet=0.0.0.0/0
 fragmentation=yes
 # trust our own Certificate Agency
 rightca=%same
 authby=rsasig
 # allow narrowing to the server’s suggested assigned IP and remote subnet
 narrowing=yes
 # Support (roaming) MOBIKE clients (RFC 4555)
 mobike=yes
 # Initiate connection
 auto=start

3.6. CONFIGURING A MESH VPN

A mesh VPN network, which is also known as an any-to-any VPN, is a network where all nodes
communicate using IPsec. The configuration allows for exceptions for nodes that cannot use IPsec.
The mesh VPN network can be configured in two ways:

To require IPsec.

To prefer IPsec but allow a fallback to clear-text communication.

Authentication between the nodes can be based on X.509 certificates or on DNS Security Extensions
(DNSSEC).

The following procedure uses X.509 certificates. These certificates can be generated using any kind of

Red Hat Enterprise Linux 8 Securing networks

26

The following procedure uses X.509 certificates. These certificates can be generated using any kind of
Certificate Authority (CA) management system, such as the Dogtag Certificate System. Dogtag
assumes that the certificates for each node are available in the PKCS #12 format (.p12 files), which
contain the private key, the node certificate, and the Root CA certificate used to validate other nodes'
X.509 certificates.

Each node has an identical configuration with the exception of its X.509 certificate. This allows for
adding new nodes without reconfiguring any of the existing nodes in the network. The PKCS #12 files
require a "friendly name", for which we use the name "node" so that the configuration files referencing
the friendly name can be identical for all nodes.

Prerequisites

Libreswan is installed, and the ipsec service is started on each node.

Procedure

1. On each node, import PKCS #12 files. This step requires the password used to generate the
PKCS #12 files:

ipsec import nodeXXX.p12

2. Create the following three connection definitions for the IPsec required (private), IPsec
optional (private-or-clear), and No IPsec (clear) profiles:

cat /etc/ipsec.d/mesh.conf
conn clear
 auto=ondemand
 type=passthrough
 authby=never
 left=%defaultroute
 right=%group

conn private
 auto=ondemand
 type=transport
 authby=rsasig
 failureshunt=drop
 negotiationshunt=drop
 # left
 left=%defaultroute
 leftcert=nodeXXXX
 leftid=%fromcert
 leftrsasigkey=%cert
 # right
 rightrsasigkey=%cert
 rightid=%fromcert
 right=%opportunisticgroup

conn private-or-clear
 auto=ondemand
 type=transport
 authby=rsasig
 failureshunt=passthrough
 negotiationshunt=passthrough

CHAPTER 3. CONFIGURING A VPN WITH IPSEC

27

 # left
 left=%defaultroute
 leftcert=nodeXXXX
 leftid=%fromcert
 leftrsasigkey=%cert
 # right
 rightrsasigkey=%cert
 rightid=%fromcert
 right=%opportunisticgroup

3. Add the IP address of the network in the proper category. For example, if all nodes reside in the
10.15.0.0/16 network, and all nodes should mandate IPsec encryption:

echo "10.15.0.0/16" >> /etc/ipsec.d/policies/private

4. To allow certain nodes, for example, 10.15.34.0/24, to work with and without IPsec, add those
nodes to the private-or-clear group using:

echo "10.15.34.0/24" >> /etc/ipsec.d/policies/private-or-clear

5. To define a host, for example, 10.15.1.2, that is not capable of IPsec into the clear group, use:

echo "10.15.1.2/32" >> /etc/ipsec.d/policies/clear

The files in the /etc/ipsec.d/policies directory can be created from a template for each new
node, or can be provisioned using Puppet or Ansible.

Note that every node has the same list of exceptions or different traffic flow expectations. Two
nodes, therefore, might not be able to communicate because one requires IPsec and the other
cannot use IPsec.

6. Restart the node to add it to the configured mesh:

systemctl restart ipsec

7. Once you finish with the addition of nodes, a ping command is sufficient to open an IPsec
tunnel. To see which tunnels a node has opened:

ipsec trafficstatus

3.7. METHODS OF AUTHENTICATION USED IN LIBRESWAN

You can use the following methods for authentication of end points:

Pre-Shared Keys (PSK) is the simplest authentication method. PSKs should consist of random
characters and have a length of at least 20 characters. In FIPS mode, PSKs need to comply to a
minimum strength requirement depending on the integrity algorithm used. It is recommended
not to use PSKs shorter than 64 random characters.

Raw RSA keys are commonly used for static host-to-host or subnet-to-subnet IPsec
configurations. The hosts are manually configured with each other’s public RSA key. This
method does not scale well when dozens or more hosts all need to setup IPsec tunnels to each
other.

Red Hat Enterprise Linux 8 Securing networks

28

X.509 certificates are commonly used for large-scale deployments where there are many hosts
that need to connect to a common IPsec gateway. A central certificate authority (CA) is used to
sign RSA certificates for hosts or users. This central CA is responsible for relaying trust,
including the revocations of individual hosts or users.

NULL authentication is used to gain mesh encryption without authentication. It protects against
passive attacks but does not protect against active attacks. However, since IKEv2 allows
asymmetrical authentication methods, NULL authentication can also be used for internet scale
opportunistic IPsec, where clients authenticate the server, but servers do not authenticate the
client. This model is similar to secure websites using TLS.

Protection against quantum computers

In addition to these authentication methods, you can use the Postquantum Preshared Keys (PPK)
method to protect against possible attacks by quantum computers. Individual clients or groups of clients
can use their own PPK by specifying a (PPKID) that corresponds to an out-of-band configured
PreShared Key.

Using IKEv1 with PreShared Keys provided protection against quantum attackers. The redesign of
IKEv2 does not offer this protection natively. Libreswan offers the use of Postquantum Preshared Keys
(PPK) to protect IKEv2 connections against quantum attacks.

To enable optional PPK support, add ppk=yes to the connection definition. To require PPK, add
ppk=insist. Then, each client can be given a PPK ID with a secret value that is communicated out-of-
band (and preferably quantum safe). The PPK’s should be very strong in randomness and not be based
on dictionary words. The PPK ID and PPK data itself are stored in ipsec.secrets, for example:

@west @east : PPKS "user1" "thestringismeanttobearandomstr"

The PPKS option refers to static PPKs. An experimental function uses one-time-pad based Dynamic
PPKs. Upon each connection, a new part of a one-time pad is used as the PPK. When used, that part of
the dynamic PPK inside the file is overwritten with zeroes to prevent re-use. If there is no more one-
time-pad material left, the connection fails. See the ipsec.secrets(5) man page for more information.

WARNING

The implementation of dynamic PPKs is provided as a Technology Preview, and this
functionality should be used with caution.

3.8. DEPLOYING A FIPS-COMPLIANT IPSEC VPN

Use this procedure to deploy a FIPS-compliant IPsec VPN solution based on Libreswan. The following
steps also enable you to identify which cryptographic algorithms are available and which are disabled for
Libreswan in FIPS mode.

Prerequisites

The AppStream repository is enabled.

Procedure

CHAPTER 3. CONFIGURING A VPN WITH IPSEC

29

1. Install the libreswan packages:

yum install libreswan

2. If you are re-installing Libreswan, remove its old NSS database:

systemctl stop ipsec
rm /etc/ipsec.d/*db

3. Start the ipsec service, and enable the service to be started automatically on boot:

systemctl enable ipsec --now

4. Configure the firewall to allow 500 and 4500/UDP ports for the IKE, ESP, and AH protocols by
adding the ipsec service:

firewall-cmd --add-service="ipsec"
firewall-cmd --runtime-to-permanent

5. Switch the system to FIPS mode in RHEL 8:

fips-mode-setup --enable

6. Restart your system to allow the kernel to switch to FIPS mode:

reboot

Verification steps

1. To confirm Libreswan is running in FIPS mode:

ipsec whack --fipsstatus
000 FIPS mode enabled

2. Alternatively, check entries for the ipsec unit in the systemd journal:

$ journalctl -u ipsec
...
Jan 22 11:26:50 localhost.localdomain pluto[3076]: FIPS Product: YES
Jan 22 11:26:50 localhost.localdomain pluto[3076]: FIPS Kernel: YES
Jan 22 11:26:50 localhost.localdomain pluto[3076]: FIPS Mode: YES

3. To see the available algorithms in FIPS mode:

ipsec pluto --selftest 2>&1 | head -11
FIPS Product: YES
FIPS Kernel: YES
FIPS Mode: YES
NSS DB directory: sql:/etc/ipsec.d
Initializing NSS
Opening NSS database "sql:/etc/ipsec.d" read-only
NSS initialized

Red Hat Enterprise Linux 8 Securing networks

30

NSS crypto library initialized
FIPS HMAC integrity support [enabled]
FIPS mode enabled for pluto daemon
NSS library is running in FIPS mode
FIPS HMAC integrity verification self-test passed

4. To query disabled algorithms in FIPS mode:

ipsec pluto --selftest 2>&1 | grep disabled
Encryption algorithm CAMELLIA_CTR disabled; not FIPS compliant
Encryption algorithm CAMELLIA_CBC disabled; not FIPS compliant
Encryption algorithm SERPENT_CBC disabled; not FIPS compliant
Encryption algorithm TWOFISH_CBC disabled; not FIPS compliant
Encryption algorithm TWOFISH_SSH disabled; not FIPS compliant
Encryption algorithm NULL disabled; not FIPS compliant
Encryption algorithm CHACHA20_POLY1305 disabled; not FIPS compliant
Hash algorithm MD5 disabled; not FIPS compliant
PRF algorithm HMAC_MD5 disabled; not FIPS compliant
PRF algorithm AES_XCBC disabled; not FIPS compliant
Integrity algorithm HMAC_MD5_96 disabled; not FIPS compliant
Integrity algorithm HMAC_SHA2_256_TRUNCBUG disabled; not FIPS compliant
Integrity algorithm AES_XCBC_96 disabled; not FIPS compliant
DH algorithm MODP1024 disabled; not FIPS compliant
DH algorithm MODP1536 disabled; not FIPS compliant
DH algorithm DH31 disabled; not FIPS compliant

5. To list all allowed algorithms and ciphers in FIPS mode:

ipsec pluto --selftest 2>&1 | grep ESP | grep FIPS | sed "s/^.*FIPS//"
{256,192,*128} aes_ccm, aes_ccm_c
{256,192,*128} aes_ccm_b
{256,192,*128} aes_ccm_a
[*192] 3des
{256,192,*128} aes_gcm, aes_gcm_c
{256,192,*128} aes_gcm_b
{256,192,*128} aes_gcm_a
{256,192,*128} aesctr
{256,192,*128} aes
{256,192,*128} aes_gmac
sha, sha1, sha1_96, hmac_sha1
sha512, sha2_512, sha2_512_256, hmac_sha2_512
sha384, sha2_384, sha2_384_192, hmac_sha2_384
sha2, sha256, sha2_256, sha2_256_128, hmac_sha2_256
aes_cmac
null
null, dh0
dh14
dh15
dh16
dh17
dh18
ecp_256, ecp256
ecp_384, ecp384
ecp_521, ecp521

CHAPTER 3. CONFIGURING A VPN WITH IPSEC

31

Additional resources

Using system-wide cryptographic policies

3.9. RELATED INFORMATION

The following resources provide additional information regarding Libreswan and the ipsec daemon.

Installed documentation

ipsec(8) man page — Describes command options for ipsec.

ipsec.conf(5) man page — Contains information on configuring ipsec.

ipsec.secrets(5) man page — Describes the format of the ipsec.secrets file.

ipsec_auto(8) man page — Describes the use of the auto command-line client for manipulating
Libreswan IPsec connections established using automatic exchanges of keys.

ipsec_rsasigkey(8) man page — Describes the tool used to generate RSA signature keys.

/usr/share/doc/libreswan-version/

Online documentation

https://libreswan.org

The website of the upstream project.

https://libreswan.org/wiki

The Libreswan Project Wiki.

https://libreswan.org/man/

All Libreswan man pages.

Red Hat Enterprise Linux 8 Securing networks

32

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening
https://libreswan.org
https://libreswan.org/wiki
https://libreswan.org/man/

CHAPTER 4. CONFIGURING MACSEC
The following section provides information on how to configure Media Control Access Security
(MACsec), which is an 802.1AE IEEE standard security technology for secure communication in all traffic
on Ethernet links.

4.1. INTRODUCTION TO MACSEC

Media Access Control Security (MACsec, IEEE 802.1AE) encrypts and authenticates all traffic in LANs
with the GCM-AES-128 algorithm. MACsec can protect not only IP but also Address Resolution
Protocol (ARP), Neighbor Discovery (ND), or DHCP. While IPsec operates on the network layer (layer 3)
and SSL or TLS on the application layer (layer 7), MACsec operates in the data link layer (layer 2).
Combine MACsec with security protocols for other networking layers to take advantage of different
security features that these standards provide.

4.2. USING MACSEC WITH NMCLI TOOL

This procedure shows how to configure MACsec with nmcli tool.

Prerequisites

The NetworkManager must be running.

You already have a 16-byte hexadecimal CAK ($MKA_CAK) and a 32-byte hexadecimal CKN
($MKA_CKN).

Procedure

~]# nmcli connection add type macsec \
 con-name test-macsec+ ifname macsec0 \
 connection.autoconnect no \
 macsec.parent enp1s0 macsec.mode psk \
 macsec.mka-cak $MKA_CAK \
 macsec.mka-ckn $MKA_CKN

~]# nmcli connection up test-macsec+

After this step, the macsec0 device is configured and can be used for networking.

4.3. USING MACSEC WITH WPA_SUPPLICANT

This procedure shows how to enable MACsec with a switch that performs authentication using a pre-
shared Connectivity Association Key/CAK Name (CAK/CKN) pair.

Procedure

1. Create a CAK/CKN pair. For example, the following command generates a 16-byte key in
hexadecimal notation:

~]$ dd if=/dev/urandom count=16 bs=1 2> /dev/null | hexdump -e '1/2 "%02x"'

2. Create the wpa_supplicant.conf configuration file and add the following lines to it:

CHAPTER 4. CONFIGURING MACSEC

33

ctrl_interface=/var/run/wpa_supplicant
eapol_version=3
ap_scan=0
fast_reauth=1

network={
 key_mgmt=NONE
 eapol_flags=0
 macsec_policy=1

 mka_cak=0011... # 16 bytes hexadecimal
 mka_ckn=2233... # 32 bytes hexadecimal
}

Use the values from the previous step to complete the mka_cak and mka_ckn lines in the
wpa_supplicant.conf configuration file.

For more information, see the wpa_supplicant.conf(5) man page.

3. Assuming you are using wlp61s0 to connect to your network, start wpa_supplicant using the
following command:

~]# wpa_supplicant -i wlp61s0 -Dmacsec_linux -c wpa_supplicant.conf

4.4. RELATED INFORMATION

For more details, see the What’s new in MACsec: setting up MACsec using wpa_supplicant and
(optionally) NetworkManager article. In addition, see the MACsec: a different solution to encrypt
network traffic article for more information about the architecture of a MACsec network, use case
scenarios, and configuration examples.

Red Hat Enterprise Linux 8 Securing networks

34

https://developers.redhat.com/blog/2017/06/28/whats-new-in-macsec-setting-up-macsec-using-wpa_supplicant-and-optionally-networkmanager/
https://developers.redhat.com/blog/2016/10/14/macsec-a-different-solution-to-encrypt-network-traffic/

CHAPTER 5. USING AND CONFIGURING FIREWALLS
A firewall is a way to protect machines from any unwanted traffic from outside. It enables users to
control incoming network traffic on host machines by defining a set of firewall rules. These rules are used
to sort the incoming traffic and either block it or allow through.

5.1. GETTING STARTED WITH FIREWALLD

5.1.1. firewalld

firewalld is a firewall service daemon that provides a dynamic customizable host-based firewall with a D-
Bus interface. Being dynamic, it enables creating, changing, and deleting the rules without the necessity
to restart the firewall daemon each time the rules are changed.

firewalld uses the concepts of zones and services, that simplify the traffic management. Zones are
predefined sets of rules. Network interfaces and sources can be assigned to a zone. The traffic allowed
depends on the network your computer is connected to and the security level this network is assigned.
Firewall services are predefined rules that cover all necessary settings to allow incoming traffic for a
specific service and they apply within a zone.

Services use one or more ports or addresses for network communication. Firewalls filter communication
based on ports. To allow network traffic for a service, its ports must be open. firewalld blocks all traffic
on ports that are not explicitly set as open. Some zones, such as trusted, allow all traffic by default.

Additional resources

firewalld(1) man page

5.1.2. Zones

firewalld can be used to separate networks into different zones according to the level of trust that the
user has decided to place on the interfaces and traffic within that network. A connection can only be
part of one zone, but a zone can be used for many network connections.

NetworkManager notifies firewalld of the zone of an interface. You can assign zones to interfaces with:

NetworkManager

firewall-config tool

firewall-cmd command-line tool

The RHEL web console

The latter three can only edit the appropriate NetworkManager configuration files. If you change the
zone of the interface using the web console, firewall-cmd or firewall-config, the request is forwarded
to NetworkManager and is not handled by firewalld.

The predefined zones are stored in the /usr/lib/firewalld/zones/ directory and can be instantly applied
to any available network interface. These files are copied to the /etc/firewalld/zones/ directory only
after they are modified. The default settings of the predefined zones are as follows:

block

Any incoming network connections are rejected with an icmp-host-prohibited message for IPv4 and

CHAPTER 5. USING AND CONFIGURING FIREWALLS

35

Any incoming network connections are rejected with an icmp-host-prohibited message for IPv4 and
icmp6-adm-prohibited for IPv6. Only network connections initiated from within the system are
possible.

dmz

For computers in your demilitarized zone that are publicly-accessible with limited access to your
internal network. Only selected incoming connections are accepted.

drop

Any incoming network packets are dropped without any notification. Only outgoing network
connections are possible.

external

For use on external networks with masquerading enabled, especially for routers. You do not trust the
other computers on the network to not harm your computer. Only selected incoming connections are
accepted.

home

For use at home when you mostly trust the other computers on the network. Only selected incoming
connections are accepted.

internal

For use on internal networks when you mostly trust the other computers on the network. Only
selected incoming connections are accepted.

public

For use in public areas where you do not trust other computers on the network. Only selected
incoming connections are accepted.

trusted

All network connections are accepted.

work

For use at work where you mostly trust the other computers on the network. Only selected incoming
connections are accepted.

One of these zones is set as the default zone. When interface connections are added to
NetworkManager, they are assigned to the default zone. On installation, the default zone in firewalld is
set to be the public zone. The default zone can be changed.

NOTE

The network zone names have been chosen to be self-explanatory and to allow users to
quickly make a reasonable decision. To avoid any security problems, review the default
zone configuration and disable any unnecessary services according to your needs and risk
assessments.

Additional resources

` firewalld.zone(5) man page

5.1.3. Predefined services

A service can be a list of local ports, protocols, source ports, and destinations, as well as a list of firewall
helper modules automatically loaded if a service is enabled. Using services saves users time because
they can achieve several tasks, such as opening ports, defining protocols, enabling packet forwarding
and more, in a single step, rather than setting up everything one after another.

Red Hat Enterprise Linux 8 Securing networks

36

Service configuration options and generic file information are described in the firewalld.service(5) man
page. The services are specified by means of individual XML configuration files, which are named in the
following format: service-name.xml. Protocol names are preferred over service or application names in
firewalld.

Services can be added and removed using the graphical firewall-config tool, firewall-cmd, and firewall-
offline-cmd.

Alternatively, you can edit the XML files in the /etc/firewalld/services/ directory. If a service is not
added or changed by the user, then no corresponding XML file is found in /etc/firewalld/services/. The
files in the /usr/lib/firewalld/services/ directory can be used as templates if you want to add or change a
service.

Additional resources

firewalld.service(5) man page

5.2. INSTALLING THE FIREWALL-CONFIG GUI CONFIGURATION TOOL

To use the firewall-config GUI configuration tool, install the firewall-config package.

Procedure

1. Enter the following command as root:

yum install firewall-config

Alternatively, in GNOME, use the Super key and type `Software to launch the Software
Sources application. Type firewall to the search box, which appears after selecting the search
button in the top-right corner. Select the Firewall item from the search results, and click on the
Install button.

2. To run firewall-config, use either the firewall-config command or press the Super key to enter
the Activities Overview, type firewall, and press Enter.

5.3. VIEWING THE CURRENT STATUS AND SETTINGS OF FIREWALLD

5.3.1. Viewing the current status of firewalld

The firewall service, firewalld, is installed on the system by default. Use the firewalld CLI interface to
check that the service is running.

Procedure

1. To see the status of the service:

firewall-cmd --state

2. For more information about the service status, use the systemctl status sub-command:

systemctl status firewalld
firewalld.service - firewalld - dynamic firewall daemon
 Loaded: loaded (/usr/lib/systemd/system/firewalld.service; enabled; vendor pr

CHAPTER 5. USING AND CONFIGURING FIREWALLS

37

 Active: active (running) since Mon 2017-12-18 16:05:15 CET; 50min ago
 Docs: man:firewalld(1)
 Main PID: 705 (firewalld)
 Tasks: 2 (limit: 4915)
 CGroup: /system.slice/firewalld.service
 └─705 /usr/bin/python3 -Es /usr/sbin/firewalld --nofork --nopid

Additional resources

It is important to know how firewalld is set up and which rules are in force before you try to edit the
settings. To display the firewall settings, see Section 5.3.2, “Viewing current firewalld settings”

5.3.2. Viewing current firewalld settings

5.3.2.1. Viewing allowed services using GUI

To view the list of services using the graphical firewall-config tool, press the Super key to enter the
Activities Overview, type firewall, and press Enter. The firewall-config tool appears. You can now view
the list of services under the Services tab.

Alternatively, to start the graphical firewall configuration tool using the command-line, enter the
following command:

$ firewall-config

The Firewall Configuration window opens. Note that this command can be run as a normal user, but you
are prompted for an administrator password occasionally.

5.3.2.2. Viewing firewalld settings using CLI

With the CLI client, it is possible to get different views of the current firewall settings. The --list-all
option shows a complete overview of the firewalld settings.

firewalld uses zones to manage the traffic. If a zone is not specified by the --zone option, the command
is effective in the default zone assigned to the active network interface and connection.

To list all the relevant information for the default zone:

firewall-cmd --list-all
public
 target: default
 icmp-block-inversion: no
 interfaces:
 sources:
 services: ssh dhcpv6-client
 ports:
 protocols:
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:

To specify the zone for which to display the settings, add the --zone=zone-name argument to the

Red Hat Enterprise Linux 8 Securing networks

38

To specify the zone for which to display the settings, add the --zone=zone-name argument to the
firewall-cmd --list-all command, for example:

firewall-cmd --list-all --zone=home
home
 target: default
 icmp-block-inversion: no
 interfaces:
 sources:
 services: ssh mdns samba-client dhcpv6-client
... [trimmed for clarity]

To see the settings for particular information, such as services or ports, use a specific option. See the
firewalld manual pages or get a list of the options using the command help:

firewall-cmd --help

Usage: firewall-cmd [OPTIONS...]

General Options
 -h, --help Prints a short help text and exists
 -V, --version Print the version string of firewalld
 -q, --quiet Do not print status messages

Status Options
 --state Return and print firewalld state
 --reload Reload firewall and keep state information
... [trimmed for clarity]

For example, to see which services are allowed in the current zone:

firewall-cmd --list-services
ssh dhcpv6-client

NOTE

Listing the settings for a certain subpart using the CLI tool can sometimes be difficult to
interpret. For example, you allow the SSH service and firewalld opens the necessary port
(22) for the service. Later, if you list the allowed services, the list shows the SSH service,
but if you list open ports, it does not show any. Therefore, it is recommended to use the --
list-all option to make sure you receive a complete information.

5.4. STARTING FIREWALLD

Procedure

1. To start firewalld, enter the following command as root:

systemctl unmask firewalld
systemctl start firewalld

2. To ensure firewalld starts automatically at system start, enter the following command as root:

CHAPTER 5. USING AND CONFIGURING FIREWALLS

39

systemctl enable firewalld

5.5. STOPPING FIREWALLD

Procedure

1. To stop firewalld, enter the following command as root:

systemctl stop firewalld

2. To prevent firewalld from starting automatically at system start:

systemctl disable firewalld

3. To make sure firewalld is not started by accessing the firewalld D-Bus interface and also if
other services require firewalld:

systemctl mask firewalld

5.6. RUNTIME AND PERMANENT SETTINGS

Any changes committed in runtime mode only apply while firewalld is running. When firewalld is
restarted, the settings revert to their permanent values.

To make the changes persistent across reboots, apply them again using the --permanent option.
Alternatively, to make changes persistent while firewalld is running, use the --runtime-to-permanent
firewall-cmd option.

If you set the rules while firewalld is running using only the --permanent option, they do not become
effective before firewalld is restarted. However, restarting firewalld closes all open ports and stops the
networking traffic.

Modifying settings in runtime and permanent configuration using CLI

Using the CLI, you do not modify the firewall settings in both modes at the same time. You only modify
either runtime or permanent mode. To modify the firewall settings in the permanent mode, use the --
permanent option with the firewall-cmd command.

firewall-cmd --permanent <other options>

Without this option, the command modifies runtime mode.

To change settings in both modes, you can use two methods:

1. Change runtime settings and then make them permanent as follows:

firewall-cmd <other options>
firewall-cmd --runtime-to-permanent

2. Set permanent settings and reload the settings into runtime mode:

Red Hat Enterprise Linux 8 Securing networks

40

firewall-cmd --permanent <other options>
firewall-cmd --reload

The first method allows you to test the settings before you apply them to the permanent mode.

NOTE

It is possible, especially on remote systems, that an incorrect setting results in a user
locking themselves out of a machine. To prevent such situations, use the --timeout
option. After a specified amount of time, any change reverts to its previous state. Using
this options excludes the --permanent option.

For example, to add the SSH service for 15 minutes:

firewall-cmd --add-service=ssh --timeout 15m

5.7. VERIFYING THE PERMANENT FIREWALLD CONFIGURATION

In certain situations, for example after manually editing firewalld configuration files, administrators want
to verify that the changes are correct. This section describes how to verify the permanent configuration
of the firewalld service.

Prerequisites

The firewalld service is running.

Procedure

1. Verify the permanent configuration of the firewalld service:

firewall-cmd --check-config
success

If the permanent configuration is valid, the command returns success. In other cases, the
command returns an error with further details, such as the following:

firewall-cmd --check-config
Error: INVALID_PROTOCOL: 'public.xml': 'tcpx' not from {'tcp'|'udp'|'sctp'|'dccp'}

5.8. CONTROLLING NETWORK TRAFFIC USING FIREWALLD

5.8.1. Disabling all traffic in case of emergency using CLI

In an emergency situation, such as a system attack, it is possible to disable all network traffic and cut off
the attacker.

Procedure

1. To immediately disable networking traffic, switch panic mode on:

firewall-cmd --panic-on

CHAPTER 5. USING AND CONFIGURING FIREWALLS

41

IMPORTANT

Enabling panic mode stops all networking traffic. From this reason, it should be used only
when you have the physical access to the machine or if you are logged in using a serial
console.

Switching off panic mode reverts the firewall to its permanent settings. To switch panic mode off:

firewall-cmd --panic-off

To see whether panic mode is switched on or off, use:

firewall-cmd --query-panic

5.8.2. Controlling traffic with predefined services using CLI

The most straightforward method to control traffic is to add a predefined service to firewalld. This
opens all necessary ports and modifies other settings according to the service definition file .

Procedure

1. Check that the service is not already allowed:

firewall-cmd --list-services
ssh dhcpv6-client

2. List all predefined services:

firewall-cmd --get-services
RH-Satellite-6 amanda-client amanda-k5-client bacula bacula-client bitcoin bitcoin-rpc
bitcoin-testnet bitcoin-testnet-rpc ceph ceph-mon cfengine condor-collector ctdb dhcp dhcpv6
dhcpv6-client dns docker-registry ...
[trimmed for clarity]

3. Add the service to the allowed services:

firewall-cmd --add-service=<service-name>

4. Make the new settings persistent:

firewall-cmd --runtime-to-permanent

5.8.3. Controlling traffic with predefined services using GUI

To enable or disable a predefined or custom service:

1. Start the firewall-config tool and select the network zone whose services are to be configured.

2. Select the Services tab.

3. Select the check box for each type of service you want to trust or clear the check box to block a
service.

Red Hat Enterprise Linux 8 Securing networks

42

To edit a service:

1. Start the firewall-config tool.

2. Select Permanent from the menu labeled Configuration. Additional icons and menu buttons
appear at the bottom of the Services window.

3. Select the service you want to configure.

The Ports, Protocols, and Source Port tabs enable adding, changing, and removing of ports, protocols,
and source port for the selected service. The modules tab is for configuring Netfilter helper modules.
The Destination tab enables limiting traffic to a particular destination address and Internet Protocol
(IPv4 or IPv6).

NOTE

It is not possible to alter service settings in Runtime mode.

5.8.4. Adding new services

Services can be added and removed using the graphical firewall-config tool, firewall-cmd, and firewall-
offline-cmd. Alternatively, you can edit the XML files in /etc/firewalld/services/. If a service is not added
or changed by the user, then no corresponding XML file are found in /etc/firewalld/services/. The files
/usr/lib/firewalld/services/ can be used as templates if you want to add or change a service.

Procedure

To add a new service in a terminal, use firewall-cmd, or firewall-offline-cmd in case of not active
firewalld.

1. Enter the following command to add a new and empty service:

$ firewall-cmd --new-service=service-name --permanent

2. To add a new service using a local file, use the following command:

$ firewall-cmd --new-service-from-file=service-name.xml --permanent

You can change the service name with the additional --name=service-name option.

3. As soon as service settings are changed, an updated copy of the service is placed into
/etc/firewalld/services/.
As root, you can enter the following command to copy a service manually:

cp /usr/lib/firewalld/services/service-name.xml /etc/firewalld/services/service-name.xml

firewalld loads files from /usr/lib/firewalld/services in the first place. If files are placed in
/etc/firewalld/services and they are valid, then these will override the matching files from
/usr/lib/firewalld/services. The overridden files in /usr/lib/firewalld/services are used as soon as the
matching files in /etc/firewalld/services have been removed or if firewalld has been asked to load the
defaults of the services. This applies to the permanent environment only. A reload is needed to get
these fallbacks also in the runtime environment.

5.8.5. Controlling ports using CLI

CHAPTER 5. USING AND CONFIGURING FIREWALLS

43

Ports are logical devices that enable an operating system to receive and distinguish network traffic and
forward it accordingly to system services. These are usually represented by a daemon that listens on the
port, that is it waits for any traffic coming to this port.

Normally, system services listen on standard ports that are reserved for them. The httpd daemon, for
example, listens on port 80. However, system administrators by default configure daemons to listen on
different ports to enhance security or for other reasons.

5.8.5.1. Opening a port

Through open ports, the system is accessible from the outside, which represents a security risk.
Generally, keep ports closed and only open them if they are required for certain services.

Procedure

To get a list of open ports in the current zone:

1. List all allowed ports:

firewall-cmd --list-ports

2. Add a port to the allowed ports to open it for incoming traffic:

firewall-cmd --add-port=port-number/port-type

3. Make the new settings persistent:

firewall-cmd --runtime-to-permanent

The port types are either tcp, udp, sctp, or dccp. The type must match the type of network
communication.

5.8.5.2. Closing a port

When an open port is no longer needed, close that port in firewalld. It is highly recommended to close all
unnecessary ports as soon as they are not used because leaving a port open represents a security risk.

Procedure

To close a port, remove it from the list of allowed ports:

1. List all allowed ports:

firewall-cmd --list-ports
[WARNING]
====
This command will only give you a list of ports that have been opened as ports. You will not
be able to see any open ports that have been opened as a service. Therefore, you should
consider using the --list-all option instead of --list-ports.
====

2. Remove the port from the allowed ports to close it for the incoming traffic:

firewall-cmd --remove-port=port-number/port-type

Red Hat Enterprise Linux 8 Securing networks

44

3. Make the new settings persistent:

firewall-cmd --runtime-to-permanent

5.8.6. Opening ports using GUI

To permit traffic through the firewall to a certain port:

1. Start the firewall-config tool and select the network zone whose settings you want to change.

2. Select the Ports tab and click the Add button on the right-hand side. The Port and Protocol
window opens.

3. Enter the port number or range of ports to permit.

4. Select tcp or udp from the list.

5.8.7. Controlling traffic with protocols using GUI

To permit traffic through the firewall using a certain protocol:

1. Start the firewall-config tool and select the network zone whose settings you want to change.

2. Select the Protocols tab and click the Add button on the right-hand side. The Protocol window
opens.

3. Either select a protocol from the list or select the Other Protocol check box and enter the
protocol in the field.

5.8.8. Opening source ports using GUI

To permit traffic through the firewall from a certain port:

1. Start the firewall-config tool and select the network zone whose settings you want to change.

2. Select the Source Port tab and click the Add button on the right-hand side. The Source Port
window opens.

3. Enter the port number or range of ports to permit. Select tcp or udp from the list.

5.9. WORKING WITH FIREWALLD ZONES

Zones represent a concept to manage incoming traffic more transparently. The zones are connected to
networking interfaces or assigned a range of source addresses. You manage firewall rules for each zone
independently, which enables you to define complex firewall settings and apply them to the traffic.

5.9.1. Listing zones

Procedure

1. To see which zones are available on your system:

firewall-cmd --get-zones

The firewall-cmd --get-zones command displays all zones that are available on the system, but

CHAPTER 5. USING AND CONFIGURING FIREWALLS

45

The firewall-cmd --get-zones command displays all zones that are available on the system, but
it does not show any details for particular zones.

2. To see detailed information for all zones:

firewall-cmd --list-all-zones

3. To see detailed information for a specific zone:

firewall-cmd --zone=zone-name --list-all

5.9.2. Modifying firewalld settings for a certain zone

The Section 5.8.2, “Controlling traffic with predefined services using CLI” and Section 5.8.5, “Controlling
ports using CLI” explain how to add services or modify ports in the scope of the current working zone.
Sometimes, it is required to set up rules in a different zone.

Procedure

1. To work in a different zone, use the --zone=zone-name option. For example, to allow the SSH
service in the zone public:

firewall-cmd --add-service=ssh --zone=public

5.9.3. Changing the default zone

System administrators assign a zone to a networking interface in its configuration files. If an interface is
not assigned to a specific zone, it is assigned to the default zone. After each restart of the firewalld
service, firewalld loads the settings for the default zone and makes it active.

Procedure

To set up the default zone:

1. Display the current default zone:

firewall-cmd --get-default-zone

2. Set the new default zone:

firewall-cmd --set-default-zone zone-name

NOTE

Following this procedure, the setting is a permanent setting, even without the --
permanent option.

5.9.4. Assigning a network interface to a zone

It is possible to define different sets of rules for different zones and then change the settings quickly by
changing the zone for the interface that is being used. With multiple interfaces, a specific zone can be
set for each of them to distinguish traffic that is coming through them.

Red Hat Enterprise Linux 8 Securing networks

46

Procedure

To assign the zone to a specific interface:

1. List the active zones and the interfaces assigned to them:

firewall-cmd --get-active-zones

2. Assign the interface to a different zone:

firewall-cmd --zone=zone-name --change-interface=<interface-name>

NOTE

You do not have to use the --permanent option to make the setting persistent across
restarts. If you set a new default zone, the setting becomes permanent.

5.9.5. Assigning a default zone to a network connection

When the connection is managed by NetworkManager, it must be aware of a zone that it uses. For
every network connection, a zone can be specified, which provides the flexibility of various firewall
settings according to the location of the computer with portable devices. Thus, zones and settings can
be specified for different locations, such as company or home.

Procedure

1. To set a default zone for an Internet connection, use either the NetworkManager GUI or edit
the /etc/sysconfig/network-scripts/ifcfg-connection-name file and add a line that assigns a
zone to this connection:

ZONE=zone-name

5.9.6. Creating a new zone

To use custom zones, create a new zone and use it just like a predefined zone. New zones require the --
permanent option, otherwise the command does not work.

Procedure

To create a new zone:

1. Create a new zone:

firewall-cmd --new-zone=zone-name

2. Check if the new zone is added to your permanent settings:

firewall-cmd --get-zones

3. Make the new settings persistent:

firewall-cmd --runtime-to-permanent

CHAPTER 5. USING AND CONFIGURING FIREWALLS

47

5.9.7. Zone configuration files

Zones can also be created using a zone configuration file. This approach can be helpful when you need to
create a new zone, but want to reuse the settings from a different zone and only alter them a little.

A firewalld zone configuration file contains the information for a zone. These are the zone description,
services, ports, protocols, icmp-blocks, masquerade, forward-ports and rich language rules in an XML
file format. The file name has to be zone-name.xml where the length of zone-name is currently limited
to 17 chars. The zone configuration files are located in the /usr/lib/firewalld/zones/ and
/etc/firewalld/zones/ directories.

The following example shows a configuration that allows one service (SSH) and one port range, for both
the TCP and UDP protocols:

<?xml version="1.0" encoding="utf-8"?>
<zone>
 <short>My zone</short>
 <description>Here you can describe the characteristic features of the zone.</description>
 <service name="ssh"/>
 <port port="1025-65535" protocol="tcp"/>
 <port port="1025-65535" protocol="udp"/>
</zone>

To change settings for that zone, add or remove sections to add ports, forward ports, services, and so
on.

Additional resources

For more information, see the firewalld.zone manual pages.

5.9.8. Using zone targets to set default behavior for incoming traffic

For every zone, you can set a default behavior that handles incoming traffic that is not further specified.
Such behaviour is defined by setting the target of the zone. There are three options - default, ACCEPT,
REJECT, and DROP. By setting the target to ACCEPT, you accept all incoming packets except those
disabled by a specific rule. If you set the target to REJECT or DROP, you disable all incoming packets
except those that you have allowed in specific rules. When packets are rejected, the source machine is
informed about the rejection, while there is no information sent when the packets are dropped.

Procedure

To set a target for a zone:

1. List the information for the specific zone to see the default target:

$ firewall-cmd --zone=zone-name --list-all

2. Set a new target in the zone:

firewall-cmd --zone=zone-name --set-target=<default|ACCEPT|REJECT|DROP>

5.10. USING ZONES TO MANAGE INCOMING TRAFFIC DEPENDING ON
A SOURCE

Red Hat Enterprise Linux 8 Securing networks

48

5.10.1. Using zones to manage incoming traffic depending on a source

You can use zones to manage incoming traffic based on its source. That enables you to sort incoming
traffic and route it through different zones to allow or disallow services that can be reached by that
traffic.

If you add a source to a zone, the zone becomes active and any incoming traffic from that source will be
directed through it. You can specify different settings for each zone, which is applied to the traffic from
the given sources accordingly. You can use more zones even if you only have one network interface.

5.10.2. Adding a source

To route incoming traffic into a specific source, add the source to that zone. The source can be an IP
address or an IP mask in the Classless Inter-domain Routing (CIDR) notation.

To set the source in the current zone:

firewall-cmd --add-source=<source>

To set the source IP address for a specific zone:

firewall-cmd --zone=zone-name --add-source=<source>

The following procedure allows all incoming traffic from 192.168.2.15 in the trusted zone:

Procedure

1. List all available zones:

firewall-cmd --get-zones

2. Add the source IP to the trusted zone in the permanent mode:

firewall-cmd --zone=trusted --add-source=192.168.2.15

3. Make the new settings persistent:

firewall-cmd --runtime-to-permanent

5.10.3. Removing a source

Removing a source from the zone cuts off the traffic coming from it.

Procedure

1. List allowed sources for the required zone:

firewall-cmd --zone=zone-name --list-sources

2. Remove the source from the zone permanently:

firewall-cmd --zone=zone-name --remove-source=<source>

CHAPTER 5. USING AND CONFIGURING FIREWALLS

49

3. Make the new settings persistent:

firewall-cmd --runtime-to-permanent

5.10.4. Adding a source port

To enable sorting the traffic based on a port of origin, specify a source port using the --add-source-port
option. You can also combine this with the --add-source option to limit the traffic to a certain IP address
or IP range.

Procedure

1. To add a source port:

firewall-cmd --zone=zone-name --add-source-port=<port-name>/<tcp|udp|sctp|dccp>

5.10.5. Removing a source port

By removing a source port you disable sorting the traffic based on a port of origin.

Procedure

1. To remove a source port:

firewall-cmd --zone=zone-name --remove-source-port=<port-name>/<tcp|udp|sctp|dccp>

5.10.6. Using zones and sources to allow a service for only a specific domain

To allow traffic from a specific network to use a service on a machine, use zones and source. The
following procedure allows traffic from 192.168.1.0/24 to be able to reach the HTTP service while any
other traffic is blocked.

Procedure

1. List all available zones:

firewall-cmd --get-zones
block dmz drop external home internal public trusted work

2. Add the source to the trusted zone to route the traffic originating from the source through the
zone:

firewall-cmd --zone=trusted --add-source=192.168.1.0/24

3. Add the http service in the trusted zone:

firewall-cmd --zone=trusted -add-service=http

4. Make the new settings persistent:

firewall-cmd --runtime-to-permanent

Red Hat Enterprise Linux 8 Securing networks

50

5. Check that the trusted zone is active and that the service is allowed in it:

firewall-cmd --zone=trusted --list-all
trusted (active)
target: ACCEPT
sources: 192.168.1.0/24
services: http

5.10.7. Configuring traffic accepted by a zone based on a protocol

You can allow incoming traffic to be accepted by a zone based on a protocol. All traffic using the
specified protocol is accepted by a zone, in which you can apply further rules and filtering.

5.10.7.1. Adding a protocol to a zone

By adding a protocol to a certain zone, you allow all traffic with this protocol to be accepted by this zone.

Procedure

1. To add a protocol to a zone:

firewall-cmd --zone=zone-name --add-protocol=port-name/tcp|udp|sctp|dccp|igmp

NOTE

To receive multicast traffic, use the igmp value with the --add-protocol option.

5.10.7.2. Removing a protocol from a zone

By removing a protocol from a certain zone, you stop accepting all traffic based on this protocol by the
zone.

Procedure

1. To remove a protocol from a zone:

firewall-cmd --zone=zone-name --remove-protocol=port-name/tcp|udp|sctp|dccp|igmp

5.11. CONFIGURING IP ADDRESS MASQUERADING

The following procedure describes how to enable IP masquerading on your system. IP masquerading
hides individual machines behind a gateway when accessing the Internet.

Procedure

1. To check if IP masquerading is enabled (for example, for the external zone), enter the following
command as root:

firewall-cmd --zone=external --query-masquerade

The command prints yes with exit status 0 if enabled. It prints no with exit status 1 otherwise. If
zone is omitted, the default zone will be used.

CHAPTER 5. USING AND CONFIGURING FIREWALLS

51

2. To enable IP masquerading, enter the following command as root:

firewall-cmd --zone=external --add-masquerade

3. To make this setting persistent, repeat the command adding the --permanent option.

To disable IP masquerading, enter the following command as root:

firewall-cmd --zone=external --remove-masquerade --permanent

5.12. PORT FORWARDING

Redirecting ports using this method only works for IPv4-based traffic. For IPv6 redirecting setup, you
must use rich rules.

To redirect to an external system, it is necessary to enable masquerading. For more information, see
Configuring IP address masquerading .

5.12.1. Adding a port to redirect

Using firewalld, you can set up ports redirection so that any incoming traffic that reaches a certain port
on your system is delivered to another internal port of your choice or to an external port on another
machine.

Prerequisites

Before you redirect traffic from one port to another port, or another address, you have to know
three things: which port the packets arrive at, what protocol is used, and where you want to
redirect them.

Procedure

To redirect a port to another port:

firewall-cmd --add-forward-port=port=port-number:proto=tcp|udp|sctp|dccp:toport=port-number

To redirect a port to another port at a different IP address:

1. Add the port to be forwarded:

firewall-cmd --add-forward-port=port=port-number:proto=tcp|udp:toport=port-
number:toaddr=IP/mask

2. Enable masquerade:

firewall-cmd --add-masquerade

5.12.2. Redirecting TCP port 80 to port 88 on the same machine

Follow the steps to redirect the TCP port 80 to port 88.

Procedure

Red Hat Enterprise Linux 8 Securing networks

52

1. Redirect the port 80 to port 88 for TCP traffic:

firewall-cmd --add-forward-port=port=80:proto=tcp:toport=88

2. Make the new settings persistent:

firewall-cmd --runtime-to-permanent

3. Check that the port is redirected:

firewall-cmd --list-all

5.12.3. Removing a redirected port

To remove a redirected port:

~]# firewall-cmd --remove-forward-port=port=port-number:proto=<tcp|udp>:toport=port-
number:toaddr=<IP/mask>

To remove a forwarded port redirected to a different address, use the following procedure.

Procedure

1. Remove the forwarded port:

~]# firewall-cmd --remove-forward-port=port=port-number:proto=<tcp|udp>:toport=port-
number:toaddr=<IP/mask>

2. Disable masquerade:

~]# firewall-cmd --remove-masquerade

5.12.4. Removing TCP port 80 forwarded to port 88 on the same machine

To remove the port redirection:

Procedure

1. List redirected ports:

~]# firewall-cmd --list-forward-ports
port=80:proto=tcp:toport=88:toaddr=

2. Remove the redirected port from the firewall::

~]# firewall-cmd --remove-forward-port=port=80:proto=tcp:toport=88:toaddr=

3. Make the new settings persistent:

~]# firewall-cmd --runtime-to-permanent

CHAPTER 5. USING AND CONFIGURING FIREWALLS

53

5.13. MANAGING ICMP REQUESTS

The Internet Control Message Protocol (ICMP) is a supporting protocol that is used by various
network devices to send error messages and operational information indicating a connection problem,
for example, that a requested service is not available. ICMP differs from transport protocols such as TCP
and UDP because it is not used to exchange data between systems.

Unfortunately, it is possible to use the ICMP messages, especially echo-request and echo-reply, to
reveal information about your network and misuse such information for various kinds of fraudulent
activities. Therefore, firewalld enables blocking the ICMP requests to protect your network information.

5.13.1. Listing and blocking ICMP requests

Listing ICMP requests

The ICMP requests are described in individual XML files that are located in the
/usr/lib/firewalld/icmptypes/ directory. You can read these files to see a description of the request. The
firewall-cmd command controls the ICMP requests manipulation.

To list all available ICMP types:

firewall-cmd --get-icmptypes

The ICMP request can be used by IPv4, IPv6, or by both protocols. To see for which protocol the
ICMP request is used:

firewall-cmd --info-icmptype=<icmptype>

The status of an ICMP request shows yes if the request is currently blocked or no if it is not. To
see if an ICMP request is currently blocked:

firewall-cmd --query-icmp-block=<icmptype>

Blocking or unblocking ICMP requests

When your server blocks ICMP requests, it does not provide the information that it normally would.
However, that does not mean that no information is given at all. The clients receive information that the
particular ICMP request is being blocked (rejected). Blocking the ICMP requests should be considered
carefully, because it can cause communication problems, especially with IPv6 traffic.

To see if an ICMP request is currently blocked:

firewall-cmd --query-icmp-block=<icmptype>

To block an ICMP request:

firewall-cmd --add-icmp-block=<icmptype>

To remove the block for an ICMP request:

firewall-cmd --remove-icmp-block=<icmptype>

Blocking ICMP requests without providing any information at all

Normally, if you block ICMP requests, clients know that you are blocking it. So, a potential attacker who

Red Hat Enterprise Linux 8 Securing networks

54

Normally, if you block ICMP requests, clients know that you are blocking it. So, a potential attacker who
is sniffing for live IP addresses is still able to see that your IP address is online. To hide this information
completely, you have to drop all ICMP requests.

To block and drop all ICMP requests:

1. Set the target of your zone to DROP:

firewall-cmd --set-target=DROP

2. Make the new settings persistent:

firewall-cmd --runtime-to-permanent

Now, all traffic, including ICMP requests, is dropped, except traffic which you have explicitly allowed.

To block and drop certain ICMP requests and allow others:

1. Set the target of your zone to DROP:

firewall-cmd --set-target=DROP

2. Add the ICMP block inversion to block all ICMP requests at once:

firewall-cmd --add-icmp-block-inversion

3. Add the ICMP block for those ICMP requests that you want to allow:

firewall-cmd --add-icmp-block=<icmptype>

4. Make the new settings persistent:

firewall-cmd --runtime-to-permanent

The block inversion inverts the setting of the ICMP requests blocks, so all requests, that were not
previously blocked, are blocked. Those that were blocked are not blocked. Which means that if you need
to unblock a request, you must use the blocking command.

To revert the block inversion to a fully permissive setting:

1. Set the target of your zone to default or ACCEPT:

firewall-cmd --set-target=default

2. Remove all added blocks for ICMP requests:

firewall-cmd --remove-icmp-block=<icmptype>

3. Remove the ICMP block inversion:

firewall-cmd --remove-icmp-block-inversion

4. Make the new settings persistent:

CHAPTER 5. USING AND CONFIGURING FIREWALLS

55

firewall-cmd --runtime-to-permanent

5.13.2. Configuring the ICMP filter using GUI

To enable or disable an ICMP filter, start the firewall-config tool and select the network zone
whose messages are to be filtered. Select the ICMP Filter tab and select the check box for each
type of ICMP message you want to filter. Clear the check box to disable a filter. This setting is
per direction and the default allows everything.

To edit an ICMP type, start the firewall-config tool and select Permanent mode from the
menu labeled Configuration. Additional icons appear at the bottom of the Services window.
Select Yes in the following dialog to enable masquerading and to make forwarding to another
machine working.

To enable inverting the ICMP Filter, click the Invert Filter check box on the right. Only marked
ICMP types are now accepted, all other are rejected. In a zone using the DROP target, they are
dropped.

5.14. SETTING AND CONTROLLING IP SETS USING FIREWALLD

To see the list of IP set types supported by firewalld, enter the following command as root.

~]# firewall-cmd --get-ipset-types
hash:ip hash:ip,mark hash:ip,port hash:ip,port,ip hash:ip,port,net hash:mac hash:net hash:net,iface
hash:net,net hash:net,port hash:net,port,net

5.14.1. Configuring IP set options using CLI

IP sets can be used in firewalld zones as sources and also as sources in rich rules. In Red Hat Enterprise
Linux, the preferred method is to use the IP sets created with firewalld in a direct rule.

To list the IP sets known to firewalld in the permanent environment, use the following
command as root:

firewall-cmd --permanent --get-ipsets

To add a new IP set, use the following command using the permanent environment as root:

firewall-cmd --permanent --new-ipset=test --type=hash:net
success

The previous command creates a new IP set with the name test and the hash:net type for IPv4.
To create an IP set for use with IPv6, add the --option=family=inet6 option. To make the new
setting effective in the runtime environment, reload firewalld.

List the new IP set with the following command as root:

firewall-cmd --permanent --get-ipsets
test

To get more information about the IP set, use the following command as root:

Red Hat Enterprise Linux 8 Securing networks

56

firewall-cmd --permanent --info-ipset=test
test
type: hash:net
options:
entries:

Note that the IP set does not have any entries at the moment.

To add an entry to the test IP set, use the following command as root:

firewall-cmd --permanent --ipset=test --add-entry=192.168.0.1
success

The previous command adds the IP address 192.168.0.1 to the IP set.

To get the list of current entries in the IP set, use the following command as root:

firewall-cmd --permanent --ipset=test --get-entries
192.168.0.1

Generate a file containing a list of IP addresses, for example:

cat > iplist.txt <<EOL
192.168.0.2
192.168.0.3
192.168.1.0/24
192.168.2.254
EOL

The file with the list of IP addresses for an IP set should contain an entry per line. Lines starting
with a hash, a semi-colon, or empty lines are ignored.

To add the addresses from the iplist.txt file, use the following command as root:

firewall-cmd --permanent --ipset=test --add-entries-from-file=iplist.txt
success

To see the extended entries list of the IP set, use the following command as root:

firewall-cmd --permanent --ipset=test --get-entries
192.168.0.1
192.168.0.2
192.168.0.3
192.168.1.0/24
192.168.2.254

To remove the addresses from the IP set and to check the updated entries list, use the following
commands as root:

firewall-cmd --permanent --ipset=test --remove-entries-from-file=iplist.txt
success
firewall-cmd --permanent --ipset=test --get-entries
192.168.0.1

CHAPTER 5. USING AND CONFIGURING FIREWALLS

57

You can add the IP set as a source to a zone to handle all traffic coming in from any of the
addresses listed in the IP set with a zone. For example, to add the test IP set as a source to the
drop zone to drop all packets coming from all entries listed in the test IP set, use the following
command as root:

firewall-cmd --permanent --zone=drop --add-source=ipset:test
success

The ipset: prefix in the source shows firewalld that the source is an IP set and not an IP
address or an address range.

Only the creation and removal of IP sets is limited to the permanent environment, all other IP set
options can be used also in the runtime environment without the --permanent option.

WARNING

Red Hat does not recommend using IP sets that are not managed through
firewalld. To use such IP sets, a permanent direct rule is required to reference the
set, and a custom service must be added to create these IP sets. This service needs
to be started before firewalld starts, otherwise firewalld is not able to add the
direct rules using these sets. You can add permanent direct rules with the
/etc/firewalld/direct.xml file.

5.15. PRIORITIZING RICH RULES

By default, rich rules are organized based on their rule action. For example, deny rules have precedence
over allow rules. The priority parameter in rich rules provides administrators fine-grained control over
rich rules and their execution order.

5.15.1. How the priority parameter organizes rules into different chains

You can set the priority parameter in a rich rule to any number between -32768 and 32767, and lower
values have higher precedence.

The firewalld service organizes rules based on their priority value into different chains:

Priority lower than 0: the rule is redirected into a chain with the _pre suffix.

Priority higher than 0: the rule is redirected into a chain with the _post suffix.

Priority equals 0: based on the action, the rule is redirected into a chain with the _log, _deny, or
_allow the action.

Inside these sub-chains, firewalld sorts the rules based on their priority value.

5.15.2. Setting the priority of a rich rule

The procedure describes an example of how to create a rich rule that uses the priority parameter to log
all traffic that is not allowed or denied by other rules. You can use this rule to flag unexpected traffic.

Procedure

Red Hat Enterprise Linux 8 Securing networks

58

Procedure

1. Add a rich rule with a very low precedence to log all traffic that has not been matched by other
rules:

firewall-cmd --add-rich-rule='rule priority=32767 log prefix="UNEXPECTED: " limit
value="5/m"'

The command additionally limits the number of log entries to 5 per minute.

2. Optionally, display the nftables rule that the command in the previous step created:

nft list chain inet firewalld filter_IN_public_post
table inet firewalld {
 chain filter_IN_public_post {
 log prefix "UNEXPECTED: " limit rate 5/minute
 }
}

5.16. CONFIGURING FIREWALL LOCKDOWN

Local applications or services are able to change the firewall configuration if they are running as root (for
example, libvirt). With this feature, the administrator can lock the firewall configuration so that either no
applications or only applications that are added to the lockdown whitelist are able to request firewall
changes. The lockdown settings default to disabled. If enabled, the user can be sure that there are no
unwanted configuration changes made to the firewall by local applications or services.

5.16.1. Configuring lockdown with using CLI

To query whether lockdown is enabled, use the following command as root:

firewall-cmd --query-lockdown

The command prints yes with exit status 0 if lockdown is enabled. It prints no with exit status 1
otherwise.

To enable lockdown, enter the following command as root:

firewall-cmd --lockdown-on

To disable lockdown, use the following command as root:

firewall-cmd --lockdown-off

5.16.2. Configuring lockdown whitelist options using CLI

The lockdown whitelist can contain commands, security contexts, users and user IDs. If a command entry
on the whitelist ends with an asterisk "*", then all command lines starting with that command will match. If
the "*" is not there then the absolute command including arguments must match.

The context is the security (SELinux) context of a running application or service. To get the
context of a running application use the following command:

CHAPTER 5. USING AND CONFIGURING FIREWALLS

59

$ ps -e --context

That command returns all running applications. Pipe the output through the grep tool to get
the application of interest. For example:

$ ps -e --context | grep example_program

To list all command lines that are on the whitelist, enter the following command as root:

firewall-cmd --list-lockdown-whitelist-commands

To add a command command to the whitelist, enter the following command as root:

firewall-cmd --add-lockdown-whitelist-command='/usr/bin/python3 -Es /usr/bin/command'

To remove a command command from the whitelist, enter the following command as root:

firewall-cmd --remove-lockdown-whitelist-command='/usr/bin/python3 -Es
/usr/bin/command'

To query whether the command command is on the whitelist, enter the following command as
root:

firewall-cmd --query-lockdown-whitelist-command='/usr/bin/python3 -Es /usr/bin/command'

The command prints yes with exit status 0 if true. It prints no with exit status 1 otherwise.

To list all security contexts that are on the whitelist, enter the following command as root:

firewall-cmd --list-lockdown-whitelist-contexts

To add a context context to the whitelist, enter the following command as root:

firewall-cmd --add-lockdown-whitelist-context=context

To remove a context context from the whitelist, enter the following command as root:

firewall-cmd --remove-lockdown-whitelist-context=context

To query whether the context context is on the whitelist, enter the following command as root:

firewall-cmd --query-lockdown-whitelist-context=context

Prints yes with exit status 0, if true, prints no with exit status 1 otherwise.

To list all user IDs that are on the whitelist, enter the following command as root:

firewall-cmd --list-lockdown-whitelist-uids

To add a user ID uid to the whitelist, enter the following command as root:

firewall-cmd --add-lockdown-whitelist-uid=uid

Red Hat Enterprise Linux 8 Securing networks

60

To remove a user ID uid from the whitelist, enter the following command as root:

firewall-cmd --remove-lockdown-whitelist-uid=uid

To query whether the user ID uid is on the whitelist, enter the following command:

$ firewall-cmd --query-lockdown-whitelist-uid=uid

Prints yes with exit status 0, if true, prints no with exit status 1 otherwise.

To list all user names that are on the whitelist, enter the following command as root:

firewall-cmd --list-lockdown-whitelist-users

To add a user name user to the whitelist, enter the following command as root:

firewall-cmd --add-lockdown-whitelist-user=user

To remove a user name user from the whitelist, enter the following command as root:

firewall-cmd --remove-lockdown-whitelist-user=user

To query whether the user name user is on the whitelist, enter the following command:

$ firewall-cmd --query-lockdown-whitelist-user=user

Prints yes with exit status 0, if true, prints no with exit status 1 otherwise.

5.16.3. Configuring lockdown whitelist options using configuration files

The default whitelist configuration file contains the NetworkManager context and the default context
of libvirt. The user ID 0 is also on the list.

<?xml version="1.0" encoding="utf-8"?>
 <whitelist>
 <selinux context="system_u:system_r:NetworkManager_t:s0"/>
 <selinux context="system_u:system_r:virtd_t:s0-s0:c0.c1023"/>
 <user id="0"/>
 </whitelist>

Following is an example whitelist configuration file enabling all commands for the firewall-cmd utility, for
a user called user whose user ID is 815:

<?xml version="1.0" encoding="utf-8"?>
 <whitelist>
 <command name="/usr/libexec/platform-python -s /bin/firewall-cmd*"/>
 <selinux context="system_u:system_r:NetworkManager_t:s0"/>
 <user id="815"/>
 <user name="user"/>
 </whitelist>

This example shows both user id and user name, but only one option is required. Python is the

CHAPTER 5. USING AND CONFIGURING FIREWALLS

61

This example shows both user id and user name, but only one option is required. Python is the
interpreter and is prepended to the command line. You can also use a specific command, for example:

/usr/bin/python3 /bin/firewall-cmd --lockdown-on

In that example, only the --lockdown-on command is allowed.

In Red Hat Enterprise Linux, all utilities are placed in the /usr/bin/ directory and the /bin/ directory is
sym-linked to the /usr/bin/ directory. In other words, although the path for firewall-cmd when entered
as root might resolve to /bin/firewall-cmd, /usr/bin/firewall-cmd can now be used. All new scripts
should use the new location. But be aware that if scripts that run as root are written to use the
/bin/firewall-cmd path, then that command path must be whitelisted in addition to the /usr/bin/firewall-
cmd path traditionally used only for non- root users.

The * at the end of the name attribute of a command means that all commands that start with this string
match. If the * is not there then the absolute command including arguments must match.

5.17. LOG FOR DENIED PACKETS

With the LogDenied option in the firewalld, it is possible to add a simple logging mechanism for denied
packets. These are the packets that are rejected or dropped. To change the setting of the logging, edit
the /etc/firewalld/firewalld.conf file or use the command-line or GUI configuration tool.

If LogDenied is enabled, logging rules are added right before the reject and drop rules in the INPUT,
FORWARD and OUTPUT chains for the default rules and also the final reject and drop rules in zones.
The possible values for this setting are: all, unicast, broadcast, multicast, and off. The default setting is
off. With the unicast, broadcast, and multicast setting, the pkttype match is used to match the link-
layer packet type. With all, all packets are logged.

To list the actual LogDenied setting with firewall-cmd, use the following command as root:

firewall-cmd --get-log-denied
off

To change the LogDenied setting, use the following command as root:

firewall-cmd --set-log-denied=all
success

To change the LogDenied setting with the firewalld GUI configuration tool, start firewall-config , click
the Options menu and select Change Log Denied. The LogDenied window appears. Select the new
LogDenied setting from the menu and click OK.

5.18. RELATED INFORMATION

The following sources of information provide additional resources regarding firewalld.

Installed documentation

firewalld(1) man page — describes command options for firewalld.

firewalld.conf(5) man page — contains information to configure firewalld.

firewall-cmd(1) man page — describes command options for the firewalld command-line client.

Red Hat Enterprise Linux 8 Securing networks

62

firewall-config(1) man page — describes settings for the firewall-config tool.

firewall-offline-cmd(1) man page — describes command options for the firewalld offline
command-line client.

firewalld.icmptype(5) man page — describes XML configuration files for ICMP filtering.

firewalld.ipset(5) man page — describes XML configuration files for the firewalld IP sets.

firewalld.service(5) man page — describes XML configuration files for firewalld service.

firewalld.zone(5) man page — describes XML configuration files for firewalld zone
configuration.

firewalld.direct(5) man page — describes the firewalld direct interface configuration file.

firewalld.lockdown-whitelist(5) man page — describes the firewalld lockdown whitelist
configuration file.

firewalld.richlanguage(5) man page — describes the firewalld rich language rule syntax.

firewalld.zones(5) man page — general description of what zones are and how to configure
them.

firewalld.dbus(5) man page — describes the D-Bus interface of firewalld.

Online documentation

http://www.firewalld.org/ — firewalld home page.

CHAPTER 5. USING AND CONFIGURING FIREWALLS

63

http://www.firewalld.org/

CHAPTER 6. GETTING STARTED WITH NFTABLES
The nftables framework enables administrators to configure packet-filtering rules used by the Linux
kernel firewall.

6.1. INTRODUCTION TO NFTABLES

The nftables framework provides packet classification facilities and it is the designated successor to the
iptables, ip6tables, arptables, and ebtables tools. It offers numerous improvements in convenience,
features, and performance over previous packet-filtering tools, most notably:

lookup tables instead of linear processing

a single framework for both the IPv4 and IPv6 protocols

rules all applied atomically instead of fetching, updating, and storing a complete rule set

support for debugging and tracing in the rule set (nftrace) and monitoring trace events (in the
nft tool)

more consistent and compact syntax, no protocol-specific extensions

a Netlink API for third-party applications

Similarly to iptables, nftables use tables for storing chains. The chains contain individual rules for
performing actions. The nft tool replaces all tools from the previous packet-filtering frameworks. The
libnftnl library can be used for low-level interaction with nftables Netlink API over the libmnl library.

Effect of the modules on the nftables rules set can be observed using the nft list rule set command.
Since these tools add tables, chains, rules, sets, and other objects to the nftables rule set, be aware that
nftables rule-set operations, such as the nft flush ruleset command, might affect rule sets installed
using the formerly separate legacy commands.

Additional resources

The nft(8) man page provides a comprehensive reference documentation for configuring and
inspecting packet filtering with nftables using the nft command-line tool.

6.2. WHEN TO USE FIREWALLD, NFTABLES, OR IPTABLES

The following is a brief overview in which scenario you should use one of the following utilities:

firewalld: Use the firewalld utility to configure a firewall on workstations. The utility is easy to
use and covers the typical use cases for this scenario.

nftables: Use the nftables utility to set up complex firewalls, such as for a whole network.

iptables: The iptables utility is deprecated in Red Hat Enterprise Linux 8. Use instead nftables.

6.3. CONVERTING IPTABLES RULES TO NFTABLES RULES

Red Hat Enterprise Linux 8 provides the iptables-translate and ip6tables-translate tools to convert
existing iptables or ip6tables rules into the equivalent ones for nftables.

Note that some extensions lack translation support. If such an extension exists, the tool prints the

Red Hat Enterprise Linux 8 Securing networks

64

Note that some extensions lack translation support. If such an extension exists, the tool prints the
untranslated rule prefixed with the # sign. For example:

iptables-translate -A INPUT -j CHECKSUM --checksum-fill
nft # -A INPUT -j CHECKSUM --checksum-fill

Additionally, users can use the iptables-restore-translate and ip6tables-restore-translate tools to
translate a dump of rules. Note that before that, users can use the iptables-save or ip6tables-save
commands to print a dump of current rules. For example:

iptables-save >/tmp/iptables.dump
iptables-restore-translate -f /tmp/iptables.dump

Translated by iptables-restore-translate v1.8.0 on Wed Oct 17 17:00:13 2018
add table ip nat
...

For more information and a list of possible options and values, enter the iptables-translate --help
command.

6.4. WRITING AND EXECUTING NFTABLES SCRIPTS

The nftables framework provides a native scripting environment that brings a major benefit over using
shell scripts to maintain firewall rules: the execution of scripts is atomic. This means that the system
either applies the whole script or prevents the execution if an error occurs. This guarantees that the
firewall is always in a consistent state.

Additionally, the nftables script environment enables administrators to:

add comments

define variables

include other rule set files

This section explains how to use these features, as well as creating and executing nftables scripts.

When you install the nftables package, Red Hat Enterprise Linux automatically creates *.nft scripts in
the /etc/nftables/ directory. These scripts contain commands that create tables and empty chains for
different purposes. You can either extend these files or write your scripts.

6.4.1. The required script header in nftables script

Similar to other scripts, nftables scripts require a shebang sequence in the first line of the script that
sets the interpreter directive.

An nftables script must always start with the following line:

#!/usr/sbin/nft -f

IMPORTANT

If you omit the -f parameter, the nft utility does not read the script and displays Error:
syntax error, unexpected newline, expecting string.

CHAPTER 6. GETTING STARTED WITH NFTABLES

65

6.4.2. Supported nftables script formats

The nftables scripting environment supports scripts in the following formats:

You can write a script in the same format as the nft list ruleset command displays the rule set:

#!/usr/sbin/nft -f

Flush the rule set
flush ruleset

table inet example_table {
 chain example_chain {
 # Chain for incoming packets that drops all packets that
 # are not explicitly allowed by any rule in this chain
 type filter hook input priority 0; policy drop;

 # Accept connections to port 22 (ssh)
 tcp dport ssh accept
 }
}

You can use the same syntax for commands as in nft commands:

#!/usr/sbin/nft -f

Flush the rule set
flush ruleset

Create a table
add table inet example_table

Create a chain for incoming packets that drops all packets
that are not explicitly allowed by any rule in this chain
add chain inet example_table example_chain { type filter hook input priority 0 ; policy drop ; }

Add a rule that accepts connections to port 22 (ssh)
add rule inet example_table example_chain tcp dport ssh accept

6.4.3. Running nftables scripts

To run an nftables script, the script must be executable. Only if the script is included in another script, it
does not require to be executable. The procedure describes how to make a script executable and run
the script.

Prerequisites

The procedure of this section assumes that you stored an nftables script in the
/etc/nftables/example_firewall.nft file.

Procedure

1. Steps that are required only once:

a. Optionally, set the owner of the script to root:

Red Hat Enterprise Linux 8 Securing networks

66

chown root /etc/nftables/example_firewall.nft

b. Make the script executable for the owner:

chmod u+x /etc/nftables/example_firewall.nft

2. Run the script:

/etc/nftables/example_firewall.nft

If no output is displayed, the system executed the script successfully.

IMPORTANT

Even if nft executes the script successfully, incorrectly placed rules, missing
parameters, or other problems in the script can cause that the firewall behaves
not as expected.

Additional resources

For details about setting the owner of a file, see the chown(1) man page.

For details about setting permissions of a file, see the chmod(1) man page.

Section 6.4.7, “Automatically loading nftables rules when the system boots”

6.4.4. Using comments in nftables scripts

The nftables scripting environment interprets everything to the right of a # character as a comment.

Example 6.1. Comments in an nftables script

Comments can start at the beginning of a line, as well as next to a command:

...
Flush the rule set
flush ruleset

add table inet example_table # Create a table
...

6.4.5. Using variables in an nftables script

To define a variable in an nftables script, use the define keyword. You can store single values and
anonymous sets in a variable. For more complex scenarios, use sets or verdict maps.

Variables with a single value
The following example defines a variable named INET_DEV with the value enp1s0:

define INET_DEV = enp1s0

CHAPTER 6. GETTING STARTED WITH NFTABLES

67

You can use the variable in the script by writing the $ sign followed by the variable name:

...
add rule inet example_table example_chain iifname $INET_DEV tcp dport ssh accept
...

Variables that contain an anonymous set
The following example defines a variable that contains an anonymous set:

define DNS_SERVERS = { 192.0.2.1, 192.0.2.2 }

You can use the variable in the script by writing the $ sign followed by the variable name:

add rule inet example_table example_chain ip daddr $DNS_SERVERS accept

NOTE

Note that curly braces have special semantics when you use them in a rule because they
indicate that the variable represents a set.

Additional resources

For details about sets, see Section 6.11, “Using sets in nftables commands” .

For details about verdict maps, see Section 6.12, “Using verdict maps in nftables commands” .

6.4.6. Including files in an nftables script

The nftables scripting environment enables administrators to include other scripts by using the include
statement.

If you specify only a file name without an absolute or relative path, nftables includes files from the
default search path, which is set to /etc on Red Hat Enterprise Linux.

Example 6.2. Including files from the default search directory

To include a file from the default search directory:

include "example.nft"

Example 6.3. Including all *.nft files from a directory

To include all files ending in *.nft that are stored in the /etc/nftables/rulesets/ directory:

include "/etc/nftables/rulesets/*.nft"

Note that the include statement does not match files beginning with a dot.

Additional resources

Red Hat Enterprise Linux 8 Securing networks

68

For further details, see the Include files section in the nft(8) man page.

6.4.7. Automatically loading nftables rules when the system boots

The nftables systemd service loads firewall scripts that are included in the /etc/sysconfig/nftables.conf
file. This section explains how to load firewall rules when the system boots.

Prerequisites

The nftables scripts are stored in the /etc/nftables/ directory.

Procedure

1. Edit the /etc/sysconfig/nftables.conf file.

If you enhance *.nft scripts created in /etc/nftables/ when you installed the nftables
package, uncomment the include statement for these scripts.

If you write scripts from scratch, add include statements to include these scripts. For
example, to load the /etc/nftables/example.nft script when the nftables service starts, add:

include "/etc/nftables/example.nft"

2. Enable the nftables service.

systemctl enable nftables

3. Optionally, start the nftables service to load the firewall rules without rebooting the system:

systemctl start nftables

Additional resources

Section 6.4.2, “Supported nftables script formats”

6.5. DISPLAYING NFTABLES RULE SETS

Rule sets of nftables contain tables, chains, and rules. This section explains how to display these rule
sets.

Procedure

1. To display all rule sets, enter:

nft list ruleset
table inet example_table {
 chain example_chain {
 type filter hook input priority 0; policy accept;
 tcp dport http accept
 tcp dport ssh accept
 }
}

NOTE

CHAPTER 6. GETTING STARTED WITH NFTABLES

69

NOTE

By default, nftables does not pre-create tables. As a consequence, displaying the
rule set on a host without any tables, the nft list ruleset command shows no
output.

6.6. CREATING AN NFTABLES TABLE

A table in nftables is a name space that contains a collection of chains, rules, sets, and other objects.
This section explains how to create a table.

Each table must have an address family defined. The address family of a table defines what address
types the table processes. You can set one of the following address families when you create a table:

ip: Matches only IPv4 packets. This is the default if you do not specify an address family.

ip6: Matches only IPv6 packets.

inet: Matches both IPv4 and IPv6 packets.

arp: Matches IPv4 address resolution protocol (ARP) packets.

bridge: Matches packets that traverse a bridge device.

netdev: Matches packets from ingress.

Procedure

1. Use the nft add table command to create a new table. For example, to create a table named
example_table that processes IPv4 and IPv6 packets:

nft add table inet example_table

2. Optionally, list all tables in the rule set:

nft list tables
table inet example_table

Additional resources

For further details about address families, see the Address families section in the nft(8) man
page.

For details on other actions you can run on tables, see the Tables section in the nft(8) man
page.

6.7. CREATING AN NFTABLES CHAIN

Chains are containers for rules. The following two rule types exists:

Base chain: You can use base chains as an entry point for packets from the networking stack.

Regular chain: You can use regular chains as a jump target and to better organize rules.

The procedure describes how to add a base chain to an existing table.

Red Hat Enterprise Linux 8 Securing networks

70

Prerequisites

The table to which you want to add the new chain exists.

Procedure

1. Use the nft add chain command to create a new chain. For example, to create a chain named
example_chain in example_table:

nft add chain inet example_table example_chain { type filter hook input priority 0 \; policy
accept \; }

IMPORTANT

To avoid that the shell interprets the semicolons as the end of the command, you
must escape the semicolons with a backslash.

This chain filters incoming packets. The priority parameter specifies the order in which nftables
processes chains with the same hook value. A lower priority value has precedence over higher
ones. The policy parameter sets the default action for rules in this chain. Note that if you are
logged in to the server remotely and you set the default policy to drop, you are disconnected
immediately if no other rule allows the remote access.

2. Optionally, display all chains:

nft list chains
table inet example_table {
 chain example_chain {
 type filter hook input priority 0; policy accept;
 }
}

Additional resources

For further details about address families, see the Address families section in the nft(8) man
page.

For details on other actions you can run on chains, see the Chains section in the nft(8) man
page.

6.8. ADDING A RULE TO AN NFTABLES CHAIN

This section explains how to add a rule to an existing nftables chain. By default, the nftables add rule
command appends a new rule to the end of the chain.

If you instead want to insert a rule at the beginning of chain, see Section 6.9, “Inserting a rule into an
nftables chain”.

Prerequisites

The chain to which you want to add the rule exists.

Procedure

CHAPTER 6. GETTING STARTED WITH NFTABLES

71

1. To add a new rule, use the nft add rule command. For example, to add a rule to the
example_chain in the example_table that allows TCP traffic on port 22:

nft add rule inet example_table example_chain tcp dport 22 accept

Instead of the port number, you can alternatively specify the name of the service. In the
example, you could use ssh instead of the port number 22. Note that a service name is resolved
to a port number based on its entry in the /etc/services file.

2. Optionally, display all chains and their rules in example_table:

nft list table inet example_table
table inet example_table {
 chain example_chain {
 type filter hook input priority 0; policy accept;
 ...
 tcp dport ssh accept
 }
}

Additional resources

For further details about address families, see the Address families section in the nft(8) man
page.

For details on other actions you can run on rules, see the Rules section in the nft(8) man page.

6.9. INSERTING A RULE INTO AN NFTABLES CHAIN

This section explains how to insert a rule at the beginning of an existing nftables chain using the
nftables insert rule command. If you instead want to add a rule to the end of a chain, see Section 6.8,
“Adding a rule to an nftables chain”.

Prerequisites

The chain to which you want to add the rule exists.

Procedure

1. To insert a new rule, use the nft insert rule command. For example, to insert a rule to the
example_chain in the example_table that allows TCP traffic on port 22:

nft add rule inet example_table example_chain tcp dport 22 accept

You can alternatively specify the name of the service instead of the port number. In the
example, you could use ssh instead of the port number 22. Note that a service name is resolved
to a port number based on its entry in the /etc/services file.

2. Optionally, display all chains and their rules in example_table:

nft list table inet example_table
table inet example_table {
 chain example_chain {
 type filter hook input priority 0; policy accept;

Red Hat Enterprise Linux 8 Securing networks

72

 tcp dport ssh accept
 ...
 }
}

Additional resources

For further details about address families, see the Address families section in the nft(8) man
page.

For details on other actions you can run on rules, see the Rules section in the nft(8) man page.

6.10. CONFIGURING NAT USING NFTABLES

With nftables, you can configure the following network address translation (NAT) types:

Masquerading

Source NAT (SNAT)

Destination NAT (DNAT)

6.10.1. The different NAT types: masquerading, source NAT, and destination NAT

These are the different network address translation (NAT) types:

Masquerading and source NAT (SNAT)

Use one of these NAT types to change the source IP address of packets. For example, internet
providers do not route reserved IP ranges, such as 10.0.0.0/8. If you use reserved IP ranges in your
network and users should be able to reach servers on the internet, map the source IP address of
packets from these ranges to a public IP address.
Both masquerading and SNAT are very similar. The differences are:

Masquerading automatically uses the IP address of the outgoing interface. Therefore, use
masquerading if the outgoing interface uses a dynamic IP address.

SNAT sets the source IP address of packets to a specified IP and does not dynamically look
up the IP of the outgoing interface. Therefore, SNAT is faster than masquerading. Use SNAT
if the outgoing interface uses a fixed IP address.

Destination NAT (DNAT)

Use this NAT type to route incoming traffic to a different host. For example, if your web server uses
an IP address from a reserved IP range and is, therefore, not directly accessible from the internet,
you can set a DNAT rule on the router to redirect incoming traffic to this server.

6.10.2. Configuring masquerading using nftables

Masquerading enables a router to dynamically change the source IP of packets sent through an
interface to the IP address of the interface. This means that if the interface gets a new IP assigned,
nftables automatically uses the new IP when replacing the source IP.

The following procedure describes how to replace the source IP of packets leaving the host through the
ens3 interface to the IP set on ens3.

Procedure

CHAPTER 6. GETTING STARTED WITH NFTABLES

73

Procedure

1. Create a table:

nft add table nat

2. Add the prerouting and postrouting chains to the table:

nft -- add chain nat prerouting { type nat hook prerouting priority -100 \; }
nft add chain nat postrouting { type nat hook postrouting priority 100 \; }

IMPORTANT

Even if you do not add a rule to the prerouting chain, the nftables framework
requires this chain to match incoming packet replies.

Note that you must pass the -- option to the nft command to avoid that the shell interprets the
negative priority value as an option of the nft command.

3. Add a rule to the postrouting chain that matches outgoing packets on the ens3 interface:

nft add rule nat postrouting oifname "ens3" masquerade

6.10.3. Configuring source NAT using nftables

On a router, Source NAT (SNAT) enables you to change the IP of packets sent through an interface to a
specific IP address.

The following procedure describes how to replace the source IP of packets leaving the router through
the ens3 interface to 192.0.2.1.

Procedure

1. Create a table:

nft add table nat

2. Add the prerouting and postrouting chains to the table:

nft -- add chain nat prerouting { type nat hook prerouting priority -100 \; }
nft add chain nat postrouting { type nat hook postrouting priority 100 \; }

IMPORTANT

Even if you do not add a rule to the postrouting chain, the nftables framework
requires this chain to match outgoing packet replies.

Note that you must pass the -- option to the nft command to avoid that the shell interprets the
negative priority value as an option of the nft command.

3. Add a rule to the postrouting chain that replaces the source IP of outgoing packets through
ens3 with 192.0.2.1:

Red Hat Enterprise Linux 8 Securing networks

74

nft add rule nat postrouting oifname "ens3" snat to 192.0.2.1

Additional resources

Section 6.13.2, “Forwarding incoming packets on a specific local port to a different host”

6.10.4. Configuring destination NAT using nftables

Destination NAT enables you to redirect traffic on a router to a host that is not directly accessible from
the internet.

The following procedure describes how to redirect incoming traffic sent to port 80 and 443 of the router
to the host with the 192.0.2.1 IP address.

Procedure

1. Create a table:

nft add table nat

2. Add the prerouting and postrouting chains to the table:

nft -- add chain nat prerouting { type nat hook prerouting priority -100 \; }
nft add chain nat postrouting { type nat hook postrouting priority 100 \; }

IMPORTANT

Even if you do not add a rule to the postrouting chain, the nftables framework
requires this chain to match outgoing packet replies.

Note that you must pass the -- option to the nft command to avoid that the shell interprets the
negative priority value as an option of the nft command.

3. Add a rule to the prerouting chain that redirects incoming traffic on the ens3 interface sent to
port 80 and 443 to the host with the 192.0.2.1 IP:

nft add rule nat prerouting iifname ens3 tcp dport { 80, 443 } dnat to 192.0.2.1

4. Depending on your environment, add either a SNAT or masquerading rule to change the source
address:

a. If the ens3 interface used dynamic IP addresses, add a masquerading rule:

nft add rule nat postrouting oifname "ens3" masquerade

b. If the ens3 interface uses a static IP address, add a SNAT rule. For example, if the ens3
uses the 198.51.100.1 IP address:

nft add rule nat postrouting oifname "ens3" snat to 198.51.100.1

Additional resources

CHAPTER 6. GETTING STARTED WITH NFTABLES

75

Section 6.10.1, “The different NAT types: masquerading, source NAT, and destination NAT”

6.11. USING SETS IN NFTABLES COMMANDS

The nftables framework natively supports sets. You can use sets, for example, if a rule should match
multiple IP addresses, port numbers, interfaces, or any other match criteria.

6.11.1. Using an anonymous sets in nftables

An anonymous set contain comma-separated values enclosed in curly brackets, such as { 22, 80, 443 },
that you use directly in a rule. You can also use anonymous sets also for IP addresses or any other match
criteria.

The drawback of anonymous sets is that if you want to change the set, you must replace the rule. For a
dynamic solution, use named sets as described in Section 6.11.2, “Using named sets in nftables” .

Prerequisites

The example_chain chain and the example_table table in the inet family exists.

Procedure

1. For example, to add a rule to example_chain in example_table that allows incoming traffic to
port 22, 80, and 443:

nft add rule inet example_table example_chain tcp dport { 22, 80, 443 } accept

2. Optionally, display all chains and their rules in example_table:

nft list table inet example_table
table inet example_table {
 chain example_chain {
 type filter hook input priority 0; policy accept;
 tcp dport { ssh, http, https } accept
 }
}

6.11.2. Using named sets in nftables

The nftables framework supports mutable named sets. A named set is a list or range of elements that
you can use in multiple rules within a table. Another benefit over anonymous sets is that you can update
a named set without replacing the rules that use the set.

When you create a named set, you must specify the type of elements the set contains. You can set the
following types:

ipv4_addr for a set that contains IPv4 addresses or ranges, such as 192.0.2.1 or 192.0.2.0/24.

ipv6_addr for a set that contains IPv6 addresses or ranges, such as 2001:db8::1 or
2001:db8::1/24.

ether_addr for a set that contains a list of media access control (MAC) addresses, such as
52:54:00:6b:66:42.

Red Hat Enterprise Linux 8 Securing networks

76

inet_proto for a set that contains a list of internet protocol types, such as tcp.

inet_service for a set that contains a list of internet services, such as ssh.

mark for a set that contains a list of packet marks. Packet marks can be any positive 32-bit
integer value (0 to 2147483647].

Prerequisites

The example_chain chain and the example_table table exists.

Procedure

1. Create an empty set. The following examples create a set for IPv4 addresses:

To create a set that can store multiple individual IPv4 addresses:

nft add set inet example_table example_set { type ipv4_addr \; }

To create a set that can store IPv4 address ranges:

nft add set inet example_table example_set { type ipv4_addr \; flags interval \; }

IMPORTANT

To avoid that the shell interprets the semicolons as the end of the command, you
must escape the semicolons with a backslash.

2. Optionally, create rules that use the set. For example, the following command adds a rule to the
example_chain in the example_table that will drop all packets from IPv4 addresses in
example_set.

nft add rule inet example_table example_chain ip saddr @example_set drop

Because example_set is still empty, the rule has currently no effect.

3. Add IPv4 addresses to example_set:

If you create a set that stores individual IPv4 addresses, enter:

nft add element inet example_table example_set { 192.0.2.1, 192.0.2.2 }

If you create a set that stores IPv4 ranges, enter:

nft add element inet example_table example_set { 192.0.2.0-192.0.2.255 }

When you specify an IP address range, you can alternatively use the Classless Inter-Domain
Routing (CIDR) notation, such as 192.0.2.0/24 in the above example.

6.11.3. Related information

For further details about sets, see the Sets section in the nft(8) man page.

CHAPTER 6. GETTING STARTED WITH NFTABLES

77

6.12. USING VERDICT MAPS IN NFTABLES COMMANDS

Verdict maps, which are also known as dictionaries, enable nft to perform an action based on packet
information by mapping match criteria to an action.

6.12.1. Using literal maps in nftables

A literal map is a { match_criteria : action } statement that you use directly in a rule. The statement can
contain multiple comma-separated mappings.

The drawback of a literal map is that if you want to change the map, you must replace the rule. For a
dynamic solution, use named verdict maps as described in Section 6.12.2, “Using mutable verdict maps in
nftables”.

The example describes how to use a literal map to route both TCP and UDP packets of the IPv4 and
IPv6 protocol to different chains to count incoming TCP and UDP packets separately.

Procedure

1. Create the example_table:

nft add table inet example_table

2. Create the tcp_packets chain in example_table:

nft add chain inet example_table tcp_packets

3. Add a rule to tcp_packets that counts the traffic in this chain:

nft add rule inet example_table tcp_packets counter

4. Create the udp_packets chain in example_table

nft add chain inet example_table udp_packets

5. Add a rule to udp_packets that counts the traffic in this chain:

nft add rule inet example_table udp_packets counter

6. Create a chain for incoming traffic. For example, to create a chain named incoming_traffic in
example_table that filters incoming traffic:

nft add chain inet example_table incoming_traffic { type filter hook input priority 0 \; }

7. Add a rule with a literal map to incoming_traffic:

nft add rule inet example_table incoming_traffic ip protocol vmap { tcp : jump tcp_packets,
udp : jump udp_packets }

The literal map distinguishes the packets and sends them to the different counter chains based
on their protocol.

8. To list the traffic counters, display example_table:

Red Hat Enterprise Linux 8 Securing networks

78

nft list table inet example_table
table inet example_table {
 chain tcp_packets {
 counter packets 36379 bytes 2103816
 }

 chain udp_packets {
 counter packets 10 bytes 1559
 }

 chain incoming_traffic {
 type filter hook input priority 0; policy accept;
 ip protocol vmap { tcp : jump tcp_packets, udp : jump udp_packets }
 }
}

The counters in the tcp_packets and udp_packets chain display both the number of received
packets and bytes.

6.12.2. Using mutable verdict maps in nftables

The nftables framework supports mutable verdict maps. You can use these maps in multiple rules within
a table. Another benefit over literal maps is that you can update a mutable map without replacing the
rules that use it.

When you create a mutable verdict map, you must specify the type of elements

ipv4_addr for a map whose match part contains an IPv4 address, such as 192.0.2.1.

ipv6_addr for a map whose match part contains an IPv6 address, such as 2001:db8::1.

ether_addr for a map whose match part contains a media access control (MAC) address, such
as 52:54:00:6b:66:42.

inet_proto for a map whose match part contains an internet protocol type, such as tcp.

inet_service for a map whose match part contains an internet services name port number, such
as ssh or 22.

mark for a map whose match part contains a packet mark. A packet mark can be any positive
32-bit integer value (0 to 2147483647.

counter for a map whose match part contains a counter value. The counter value can be any
positive 64-bit integer value.

quota for a map whose match part contains a quota value. The quota value can be any positive
64-bit integer value.

The example describes how to allow or drop incoming packets based on their source IP address. Using a
mutable verdict map, you require only a single rule to configure this scenario while the IP addresses and
actions are dynamically stored in the map. The procedure also describes how to add and remove entries
from the map.

Procedure

1. Create a table. For example, to create a table named example_table that processes IPv4

CHAPTER 6. GETTING STARTED WITH NFTABLES

79

1. Create a table. For example, to create a table named example_table that processes IPv4
packets:

nft add table ip example_table

2. Create a chain. For example, to create a chain named example_chain in example_table:

nft add chain ip example_table example_chain { type filter hook input priority 0 \; }

IMPORTANT

To avoid that the shell interprets the semicolons as the end of the command, you
must escape the semicolons with a backslash.

3. Create an empty map. For example, to create a map for IPv4 addresses:

nft add map ip example_table example_map { type ipv4_addr : verdict \; }

4. Create rules that use the map. For example, the following command adds a rule to
example_chain in example_table that applies actions to IPv4 addresses which are both
defined in example_map:

nft add rule example_table example_chain ip saddr vmap @example_map

5. Add IPv4 addresses and corresponding actions to example_map:

nft add element ip example_table example_map { 192.0.2.1 : accept, 192.0.2.2 : drop }

This example defines the mappings of IPv4 addresses to actions. In combination with the rule
created above, the firewall accepts packet from 192.0.2.1 and drops packets from 192.0.2.2.

6. Optionally, enhance the map by adding another IP address and action statement:

nft add element ip example_table example_map { 192.0.2.3 : accept }

7. Optionally, remove an entry from the map:

nft delete element ip example_table example_map { 192.0.2.1 }

8. Optionally, display the rule set:

nft list ruleset
table ip example_table {
 map example_map {
 type ipv4_addr : verdict
 elements = { 192.0.2.2 : drop, 192.0.2.3 : accept }
 }

 chain example_chain {
 type filter hook input priority 0; policy accept;
 ip saddr vmap @example_map
 }
}

Red Hat Enterprise Linux 8 Securing networks

80

6.12.3. Related information

For further details about verdict maps, see the Maps section in the nft(8) man page.

6.13. CONFIGURING PORT FORWARDING USING NFTABLES

Port forwarding enables administrators to forward packets sent to a specific destination port to a
different local or remote port.

For example, if your web server does not have a public IP address, you can set a port forwarding rule on
your firewall that forwards incoming packets on port 80 and 443 on the firewall to the web server. With
this firewall rule, users on the internet can access the web server using the IP or host name of the
firewall.

6.13.1. Forwarding incoming packets to a different local port

This section describes an example of how to forward incoming IPv4 packets on port 8022 to port 22 on
the local system.

Procedure

1. Create a table named nat with the ip address family:

nft add table ip nat

2. Add the prerouting and postrouting chains to the table:

nft -- add chain ip nat prerouting { type nat hook prerouting priority -100 \; }

NOTE

Pass the -- option to the nft command to avoid that the shell interprets the
negative priority value as an option of the nft command.

3. Add a rule to the prerouting chain that redirects incoming packets on port 8022 to the local
port 22:

nft add rule ip nat prerouting tcp dport 8022 redirect to :22

6.13.2. Forwarding incoming packets on a specific local port to a different host

You can use a destination network address translation (DNAT) rule to forward incoming packets on a
local port to a remote host. This enables users on the internet to access a service that runs on a host
with a private IP address.

The procedure describes how to forward incoming IPv4 packets on the local port 443 to the same port
number on the remote system with the 192.0.2.1 IP address.

Prerequisite

You are logged in as the root user on the system that should forward the packets.

CHAPTER 6. GETTING STARTED WITH NFTABLES

81

Procedure

1. Create a table named nat with the ip address family:

nft add table ip nat

2. Add the prerouting and postrouting chains to the table:

nft -- add chain ip nat prerouting { type nat hook prerouting priority -100 \; }
nft add chain ip nat postrouting { type nat hook postrouting priority 100 \; }

NOTE

Pass the -- option to the nft command to avoid that the shell interprets the
negative priority value as an option of the nft command.

3. Add a rule to the prerouting chain that redirects incoming packets on port 443 to the same port
on 192.0.2.1:

nft add rule ip nat prerouting tcp dport 443 dnat to 192.0.2.1

4. Add a rule to the postrouting chain to masquerade outgoing traffic:

nft add rule ip daddr 192.0.2.1 masquerade

5. Enable packet forwarding:

echo "sysctl net.ipv4.ip_forward=1" > /etc/sysctl.d/95-IPv4-forwarding.conf
sysctl -p /etc/sysctl.d/95-IPv4-forwarding.conf

6.14. LIMITING THE NUMBER OF CONNECTIONS USING NFTABLES

The ct count parameter of the nft utility enables administrators to limit the number of connections. The
procedure describes a basic example of how to limit incoming connections.

Prerequisites

The base example_chain in example_table exists.

Procedure

1. Add a rule that allows only two simultaneous connections to the SSH port (22) from an IPv4
address and rejects all further connections from the same IP:

nft add rule ip example_table example_chain tcp dport ssh meter example_meter { ip saddr
ct count over 2 } counter reject

2. Optionally, display the meter created in the previous step:

nft list meter ip example_table example_meter
table ip example_table {
 meter example_meter {

Red Hat Enterprise Linux 8 Securing networks

82

 type ipv4_addr
 size 65535
 elements = { 192.0.2.1 : ct count over 2 , 192.0.2.2 : ct count over 2 }
 }
}

The elements entry displays addresses that currently match the rule. In this example, elements
lists IP addresses that have active connections to the SSH port. Note that the output does not
display the number of active connections or if connections were rejected.

6.15. BLOCKING IP ADDRESSES THAT ATTEMPT MORE THAN TEN
NEW INCOMING TCP CONNECTIONS WITHIN ONE MINUTE

The nftables framework enables administrators to dynamically update sets. This section explains how
you use this feature to temporarily block hosts that are establishing more than ten IPv4 TCP
connections within one minute. After five minutes, nftables automatically removes the IP address from
the blacklist.

Procedure

1. Create the filter table with the ip address family:

nft add table ip filter

2. Add the input chain to the filter table:

nft add chain ip filter input { type filter hook input priority 0 \; }

3. Add a set named blacklist to the filter table:

nft add set ip filter blacklist { type ipv4_addr \; flags dynamic, timeout \; timeout 5m \; }

This command creates a dynamic set for IPv4 addresses. The timeout 5m parameter defines
that nftables automatically removes entries after 5 minutes from the set.

4. Add a rule that automatically adds the source IP address of hosts that attempt to establish
more than ten new TCP connections within one minute to the blacklist set:

nft add rule ip filter input ip protocol tcp ct state new, untracked limit rate over 10/minute
add @blacklist { ip saddr }

5. Add a rule that drops all connections from IP addresses in the blacklist set:

nft add rule ip filter input ip saddr @blacklist drop

Additional resources

Section 6.11.2, “Using named sets in nftables”

6.16. DEBUGGING NFTABLES RULES

The nftables framework provides different options for administrators to debug rules and if packets

CHAPTER 6. GETTING STARTED WITH NFTABLES

83

The nftables framework provides different options for administrators to debug rules and if packets
match them. This section describes these options.

6.16.1. Creating a rule with a counter

To identify if a rule is matched, you can use a counter. This section describes how to create a new rule
with a counter.

For a procedure that adds a counter to an existing rule, see Section 6.16.2, “Adding a counter to an
existing rule”.

Prerequisites

The chain to which you want to add the rule exists.

Procedure

1. Add a new rule with the counter parameter to the chain. The following example adds a rule with
a counter that allows TCP traffic on port 22 and counts the packets and traffic that match this
rule:

nft add rule inet example_table example_chain tcp dport 22 counter accept

2. To display the counter values:

nft list ruleset
table inet example_table {
 chain example_chain {
 type filter hook input priority 0; policy accept;
 tcp dport ssh counter packets 6872 bytes 105448565 accept
 }
}

6.16.2. Adding a counter to an existing rule

To identify if a rule is matched, you can use a counter. This section describes how to add a counter to an
existing rule.

For a procedure to add a new rule with a counter, see Section 6.16.1, “Creating a rule with a counter” .

Prerequisites

The rule to which you want to add the counter exists.

Procedure

1. Display the rules in the chain including their handles:

nft --handle list chain inet example_table example_chain
table inet example_table {
 chain example_chain { # handle 1
 type filter hook input priority 0; policy accept;

Red Hat Enterprise Linux 8 Securing networks

84

 tcp dport ssh accept # handle 4
 }
}

2. Add the counter by replacing the rule but with the counter parameter. The following example
replaces the rule displayed in the previous step and adds a counter:

nft replace rule inet example_table example_chain handle 4 tcp dport 22 counter accept

3. To display the counter values:

nft list ruleset
table inet example_table {
 chain example_chain {
 type filter hook input priority 0; policy accept;
 tcp dport ssh counter packets 6872 bytes 105448565 accept
 }
}

6.16.3. Monitoring packets that match an existing rule

The tracing feature in nftables in combination with the nft monitor command enables administrators to
display packets that match a rule. The procedure describes how to enable tracing for a rule as well as
monitoring packets that match this rule.

Prerequisites

The rule to which you want to add the counter exists.

Procedure

1. Display the rules in the chain including their handles:

nft --handle list chain inet example_table example_chain
table inet example_table {
 chain example_chain { # handle 1
 type filter hook input priority 0; policy accept;
 tcp dport ssh accept # handle 4
 }
}

2. Add the tracing feature by replacing the rule but with the meta nftrace set 1 parameters. The
following example replaces the rule displayed in the previous step and enables tracing:

nft replace rule inet example_table example_chain handle 4 tcp dport 22 meta nftrace set
1 accept

3. Use the nft monitor command to display the tracing. The following example filters the output of
the command to display only entries that contain inet example_table example_chain:

nft monitor | grep "inet example_table example_chain"
trace id 3c5eb15e inet example_table example_chain packet: iif "enp1s0" ether saddr
52:54:00:17:ff:e4 ether daddr 52:54:00:72:2f:6e ip saddr 192.0.2.1 ip daddr 192.0.2.2 ip dscp

CHAPTER 6. GETTING STARTED WITH NFTABLES

85

cs0 ip ecn not-ect ip ttl 64 ip id 49710 ip protocol tcp ip length 60 tcp sport 56728 tcp dport
ssh tcp flags == syn tcp window 64240
trace id 3c5eb15e inet example_table example_chain rule tcp dport ssh nftrace set 1 accept
(verdict accept)
...

WARNING

Depending on the number of rules with tracing enabled and the amount of
matching traffic, the nft monitor command can display a lot of output. Use
grep or other utilities to filter the output.

6.17. BACKING UP AND RESTORING NFTABLES RULE SETS

This section describes how to backup nftables rules to a file, as well as restoring rules from a file.

Administrators can use a file with the rules to, for example, transfer the rules to a different server.

6.17.1. Backing up nftables rule sets to a file

This section describes how to back up nftables rule sets to a file.

Procedure

1. To backup nftables rules:

In nft list ruleset format:

nft list ruleset > file.nft

In JSON format:

nft -j list ruleset > file.json

6.17.2. Restoring nftables rule sets from a file

This section describes how to restore nftables rule sets.

Procedure

1. To restore nftables rules:

If the file to restore is in nft list ruleset format or contains nft commands:

nft -f file.nft

If the file to restore is in JSON format:

Red Hat Enterprise Linux 8 Securing networks

86

nft -j -f file.json

6.18. RELATED INFORMATION

The Using nftables in Red Hat Enterprise Linux 8 blog post provides an overview about using
nftables features.

The What comes after iptables? Its successor, of course: nftables article explains why nftables
replaces iptables.

The Firewalld: The Future is nftables article provides additional information on nftables as a
default back end for firewalld.

CHAPTER 6. GETTING STARTED WITH NFTABLES

87

https://www.redhat.com/en/blog/using-nftables-red-hat-enterprise-linux-8
https://developers.redhat.com/blog/2016/10/28/what-comes-after-iptables-its-successor-of-course-nftables/
https://developers.redhat.com/blog/2018/08/10/firewalld-the-future-is-nftables/

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. USING SECURE COMMUNICATIONS BETWEEN TWO SYSTEMS WITH OPENSSH
	1.1. SSH AND OPENSSH
	1.2. CONFIGURING AND STARTING AN OPENSSH SERVER
	1.3. USING KEY PAIRS INSTEAD OF PASSWORDS FOR SSH AUTHENTICATION
	1.3.1. Setting an OpenSSH server for key-based authentication
	1.3.2. Generating SSH key pairs

	1.4. USING SSH KEYS STORED ON A SMART CARD
	1.5. MAKING OPENSSH MORE SECURE
	1.6. CONNECTING TO A REMOTE SERVER USING AN SSH JUMP HOST
	1.7. ADDITIONAL RESOURCES

	CHAPTER 2. PLANNING AND IMPLEMENTING TLS
	2.1. SSL AND TLS PROTOCOLS
	2.2. SECURITY CONSIDERATIONS FOR TLS IN RHEL 8
	2.2.1. Protocols
	2.2.2. Cipher suites
	2.2.3. Public key length

	2.3. HARDENING TLS CONFIGURATION IN APPLICATIONS
	2.3.1. Configuring the Apache HTTP server
	2.3.2. Configuring the Nginx HTTP and proxy server
	2.3.3. Configuring the Dovecot mail server

	CHAPTER 3. CONFIGURING A VPN WITH IPSEC
	3.1. LIBRESWAN AS AN IPSEC VPN IMPLEMENTATION
	3.2. INSTALLING LIBRESWAN
	3.3. CREATING A HOST-TO-HOST VPN
	3.4. CONFIGURING A SITE-TO-SITE VPN
	3.5. CONFIGURING A REMOTE ACCESS VPN
	3.6. CONFIGURING A MESH VPN
	3.7. METHODS OF AUTHENTICATION USED IN LIBRESWAN
	3.8. DEPLOYING A FIPS-COMPLIANT IPSEC VPN
	3.9. RELATED INFORMATION

	CHAPTER 4. CONFIGURING MACSEC
	4.1. INTRODUCTION TO MACSEC
	4.2. USING MACSEC WITH NMCLI TOOL
	4.3. USING MACSEC WITH WPA_SUPPLICANT
	4.4. RELATED INFORMATION

	CHAPTER 5. USING AND CONFIGURING FIREWALLS
	5.1. GETTING STARTED WITH FIREWALLD
	5.1.1. firewalld
	5.1.2. Zones
	5.1.3. Predefined services

	5.2. INSTALLING THE FIREWALL-CONFIG GUI CONFIGURATION TOOL
	5.3. VIEWING THE CURRENT STATUS AND SETTINGS OF FIREWALLD
	5.3.1. Viewing the current status of firewalld
	5.3.2. Viewing current firewalld settings
	5.3.2.1. Viewing allowed services using GUI
	5.3.2.2. Viewing firewalld settings using CLI

	5.4. STARTING FIREWALLD
	5.5. STOPPING FIREWALLD
	5.6. RUNTIME AND PERMANENT SETTINGS
	5.7. VERIFYING THE PERMANENT FIREWALLD CONFIGURATION
	5.8. CONTROLLING NETWORK TRAFFIC USING FIREWALLD
	5.8.1. Disabling all traffic in case of emergency using CLI
	5.8.2. Controlling traffic with predefined services using CLI
	5.8.3. Controlling traffic with predefined services using GUI
	5.8.4. Adding new services
	5.8.5. Controlling ports using CLI
	5.8.5.1. Opening a port
	5.8.5.2. Closing a port

	5.8.6. Opening ports using GUI
	5.8.7. Controlling traffic with protocols using GUI
	5.8.8. Opening source ports using GUI

	5.9. WORKING WITH FIREWALLD ZONES
	5.9.1. Listing zones
	5.9.2. Modifying firewalld settings for a certain zone
	5.9.3. Changing the default zone
	5.9.4. Assigning a network interface to a zone
	5.9.5. Assigning a default zone to a network connection
	5.9.6. Creating a new zone
	5.9.7. Zone configuration files
	5.9.8. Using zone targets to set default behavior for incoming traffic

	5.10. USING ZONES TO MANAGE INCOMING TRAFFIC DEPENDING ON A SOURCE
	5.10.1. Using zones to manage incoming traffic depending on a source
	5.10.2. Adding a source
	5.10.3. Removing a source
	5.10.4. Adding a source port
	5.10.5. Removing a source port
	5.10.6. Using zones and sources to allow a service for only a specific domain
	5.10.7. Configuring traffic accepted by a zone based on a protocol
	5.10.7.1. Adding a protocol to a zone
	5.10.7.2. Removing a protocol from a zone

	5.11. CONFIGURING IP ADDRESS MASQUERADING
	5.12. PORT FORWARDING
	5.12.1. Adding a port to redirect
	5.12.2. Redirecting TCP port 80 to port 88 on the same machine
	5.12.3. Removing a redirected port
	5.12.4. Removing TCP port 80 forwarded to port 88 on the same machine

	5.13. MANAGING ICMP REQUESTS
	5.13.1. Listing and blocking ICMP requests
	5.13.2. Configuring the ICMP filter using GUI

	5.14. SETTING AND CONTROLLING IP SETS USING FIREWALLD
	5.14.1. Configuring IP set options using CLI

	5.15. PRIORITIZING RICH RULES
	5.15.1. How the priority parameter organizes rules into different chains
	5.15.2. Setting the priority of a rich rule

	5.16. CONFIGURING FIREWALL LOCKDOWN
	5.16.1. Configuring lockdown with using CLI
	5.16.2. Configuring lockdown whitelist options using CLI
	5.16.3. Configuring lockdown whitelist options using configuration files

	5.17. LOG FOR DENIED PACKETS
	5.18. RELATED INFORMATION
	Installed documentation
	Online documentation

	CHAPTER 6. GETTING STARTED WITH NFTABLES
	6.1. INTRODUCTION TO NFTABLES
	6.2. WHEN TO USE FIREWALLD, NFTABLES, OR IPTABLES
	6.3. CONVERTING IPTABLES RULES TO NFTABLES RULES
	6.4. WRITING AND EXECUTING NFTABLES SCRIPTS
	6.4.1. The required script header in nftables script
	6.4.2. Supported nftables script formats
	6.4.3. Running nftables scripts
	6.4.4. Using comments in nftables scripts
	6.4.5. Using variables in an nftables script
	Variables with a single value
	Variables that contain an anonymous set

	6.4.6. Including files in an nftables script
	6.4.7. Automatically loading nftables rules when the system boots

	6.5. DISPLAYING NFTABLES RULE SETS
	6.6. CREATING AN NFTABLES TABLE
	6.7. CREATING AN NFTABLES CHAIN
	6.8. ADDING A RULE TO AN NFTABLES CHAIN
	6.9. INSERTING A RULE INTO AN NFTABLES CHAIN
	6.10. CONFIGURING NAT USING NFTABLES
	6.10.1. The different NAT types: masquerading, source NAT, and destination NAT
	6.10.2. Configuring masquerading using nftables
	6.10.3. Configuring source NAT using nftables
	6.10.4. Configuring destination NAT using nftables

	6.11. USING SETS IN NFTABLES COMMANDS
	6.11.1. Using an anonymous sets in nftables
	6.11.2. Using named sets in nftables
	6.11.3. Related information

	6.12. USING VERDICT MAPS IN NFTABLES COMMANDS
	6.12.1. Using literal maps in nftables
	6.12.2. Using mutable verdict maps in nftables
	6.12.3. Related information

	6.13. CONFIGURING PORT FORWARDING USING NFTABLES
	6.13.1. Forwarding incoming packets to a different local port
	6.13.2. Forwarding incoming packets on a specific local port to a different host

	6.14. LIMITING THE NUMBER OF CONNECTIONS USING NFTABLES
	6.15. BLOCKING IP ADDRESSES THAT ATTEMPT MORE THAN TEN NEW INCOMING TCP CONNECTIONS WITHIN ONE MINUTE
	6.16. DEBUGGING NFTABLES RULES
	6.16.1. Creating a rule with a counter
	6.16.2. Adding a counter to an existing rule
	6.16.3. Monitoring packets that match an existing rule

	6.17. BACKING UP AND RESTORING NFTABLES RULE SETS
	6.17.1. Backing up nftables rule sets to a file
	6.17.2. Restoring nftables rule sets from a file

	6.18. RELATED INFORMATION

