
Red Hat Enterprise Linux 8

Managing, monitoring and updating the kernel

A guide to managing the Linux kernel on Red Hat Enterprise Linux 8

Last Updated: 2019-11-05

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

A guide to managing the Linux kernel on Red Hat Enterprise Linux 8

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides the users and administrators with necessary information about configuring
their workstations on the Linux kernel level. Such adjustments bring performance enhancements,
easier troubleshooting or optimized system.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. THE LINUX KERNEL RPM
1.1. WHAT AN RPM IS

Types of RPM packages
1.2. THE LINUX KERNEL RPM PACKAGE OVERVIEW
1.3. DISPLAYING CONTENTS OF THE KERNEL PACKAGE

CHAPTER 2. UPDATING KERNEL WITH YUM
2.1. WHAT IS THE KERNEL
2.2. WHAT IS YUM
2.3. UPDATING THE KERNEL
2.4. INSTALLING THE KERNEL

CHAPTER 3. MANAGING KERNEL MODULES
3.1. INTRODUCTION TO KERNEL MODULES
3.2. KERNEL MODULE DEPENDENCIES
3.3. LISTING CURRENTLY LOADED KERNEL MODULES
3.4. DISPLAYING INFORMATION ABOUT KERNEL MODULES
3.5. LOADING KERNEL MODULES AT SYSTEM RUNTIME
3.6. UNLOADING KERNEL MODULES AT SYSTEM RUNTIME
3.7. LOADING KERNEL MODULES AUTOMATICALLY AT SYSTEM BOOT TIME
3.8. PREVENTING KERNEL MODULES FROM BEING AUTOMATICALLY LOADED AT SYSTEM BOOT TIME

CHAPTER 4. CONFIGURING KERNEL COMMAND LINE PARAMETERS
4.1. WHAT ARE KERNEL COMMAND LINE PARAMETERS
4.2. WHAT IS GRUBBY
4.3. WHAT ARE BOOT ENTRIES
4.4. SETTING KERNEL COMMAND LINE PARAMETERS

4.4.1. Changing kernel command line parameters for all boot entries
4.4.2. Changing kernel command line parameters for a single boot entry

CHAPTER 5. CONFIGURING KERNEL PARAMETERS AT RUNTIME
5.1. WHAT ARE KERNEL PARAMETERS
5.2. SETTING KERNEL PARAMETERS AT RUNTIME

5.2.1. Configuring kernel parameters temporarily with sysctl
5.2.2. Configuring kernel parameters permanently with sysctl
5.2.3. Using configuration files in /etc/sysctl.d/ to adjust kernel parameters
5.2.4. Configuring kernel parameters temporarily through /proc/sys/

5.3. KEEPING KERNEL PANIC PARAMETERS DISABLED IN VIRTUALIZED ENVIRONMENTS
5.3.1. What is a soft lockup
5.3.2. Parameters controlling kernel panic
5.3.3. Spurious soft lockups in virtualized environments

5.4. ADJUSTING KERNEL PARAMETERS FOR DATABASE SERVERS
5.4.1. Introduction to database servers
5.4.2. Parameters affecting performance of database applications

Additional resources

CHAPTER 6. GETTING STARTED WITH KERNEL LOGGING
6.1. WHAT IS THE KERNEL RING BUFFER
6.2. ROLE OF PRINTK ON LOG-LEVELS AND KERNEL LOGGING

CHAPTER 7. INSTALLING AND CONFIGURING KDUMP

5

6
6
6
6
7

9
9
9
9

10

11
11
11

12
12
13
14
15
16

19
19
19
19

20
20
21

22
22
23
23
23
24
25
26
26
26
27
28
28
28
29

30
30
30

32

Table of Contents

1

. .

. .

. .

7.1. WHAT IS KDUMP
7.2. INSTALLING KDUMP
7.3. CONFIGURING KDUMP ON THE COMMAND LINE

7.3.1. Configuring kdump memory usage
7.3.2. Configuring the kdump target
7.3.3. Configuring the core collector
7.3.4. Configuring the kdump default failure responses
7.3.5. Enabling and disabling the kdump service

7.4. CONFIGURING KDUMP IN THE WEB CONSOLE
7.4.1. Configuring kdump memory usage and target location in web console

7.5. SUPPORTED KDUMP CONFIGURATIONS AND TARGETS
7.5.1. Memory requirements for kdump
7.5.2. Minimum threshold for automatic memory reservation
7.5.3. Supported kdump targets
7.5.4. Supported kdump filtering levels
7.5.5. Supported default failure responses
7.5.6. Estimating kdump size

7.6. TESTING THE KDUMP CONFIGURATION
7.7. ANALYZING A CORE DUMP

7.7.1. Installing the crash utility
7.7.2. Running and exiting the crash utility
7.7.3. Displaying message buffer, backtrace, and other indicators in the crash utility

Displaying the message buffer
7.7.3.1. Displaying a backtrace
7.7.3.2. Displaying a process status
7.7.3.3. Displaying virtual memory information
7.7.3.4. Displaying open files

7.7.4. Using Kernel Oops Analyzer

CHAPTER 8. APPLYING PATCHES WITH KERNEL LIVE PATCHING
8.1. LIMITATIONS OF KPATCH
8.2. SUPPORT FOR THIRD-PARTY LIVE PATCHING
8.3. ACCESS TO KERNEL LIVE PATCHES
8.4. COMPONENTS OF KERNEL LIVE PATCHING
8.5. HOW KERNEL LIVE PATCHING WORKS
8.6. ENABLING KERNEL LIVE PATCHING

8.6.1. Subscribing to the live patching stream
8.7. UPDATING KERNEL PATCH MODULES
8.8. DISABLING KERNEL LIVE PATCHING

8.8.1. Removing the live patching package
8.8.2. Uninstalling the kernel patch module
8.8.3. Disabling kpatch.service

CHAPTER 9. SETTING LIMITS FOR APPLICATIONS
9.1. WHAT ARE CONTROL GROUPS

9.1.1. Control groups version 1
9.1.2. Control groups version 2

9.2. WHAT ARE KERNEL RESOURCE CONTROLLERS
9.3. WHAT ARE NAMESPACES
9.4. USING CONTROL GROUPS THROUGH A VIRTUAL FILE SYSTEM

9.4.1. Setting memory limits to applications through cgroups-v1

CHAPTER 10. ANALYZING SYSTEM PERFORMANCE WITH BPF COMPILER COLLECTION
10.1. BCC

32
32
33
33
34
36
37
37
38
38
40
40
41

42
43
44
44
45
46
46
46
47
48
48
49
49
50
50

52
52
52
53
53
53
54
54
56
56
57
58
59

61
61
61
61

62
63
64
64

67
67

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

2

10.2. INSTALLING BCC
10.3. USING SELECTED BCC-TOOLS FOR PERFORMANCE ANALYSES

Using execsnoop to examine the system processes
Using opensnoop to track what files a command opens
Using biotop to examine the I/O operations on the disk
Using xfsslower to expose unexpectedly slow file system operations

67
68
68
69
69
70

Table of Contents

3

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

4

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Please let us know how we could make it better. To do
so:

For simple comments on specific passages, make sure you are viewing the documentation in the
Multi-page HTML format. Highlight the part of text that you want to comment on. Then, click
the Add Feedback pop-up that appears below the highlighted text, and follow the displayed
instructions.

For submitting more complex feedback, create a Bugzilla ticket:

1. Go to the Bugzilla website.

2. As the Component, use Documentation.

3. Fill in the Description field with your suggestion for improvement. Include a link to the
relevant part(s) of documentation.

4. Click Submit Bug.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

5

https://bugzilla.redhat.com/enter_bug.cgi?product=Red Hat Enterprise Linux 8

CHAPTER 1. THE LINUX KERNEL RPM
The following sections describe the Linux kernel RPM package provided and maintained by Red Hat.

1.1. WHAT AN RPM IS

An RPM package is a file containing other files and their metadata (information about the files that are
needed by the system).

Specifically, an RPM package consists of the cpio archive.

The cpio archive contains:

Files

RPM header (package metadata)
The rpm package manager uses this metadata to determine dependencies, where to install files,
and other information.

Types of RPM packages
There are two types of RPM packages. Both types share the file format and tooling, but have different
contents and serve different purposes:

Source RPM (SRPM)
An SRPM contains source code and a SPEC file, which describes how to build the source code
into a binary RPM. Optionally, the patches to source code are included as well.

Binary RPM
A binary RPM contains the binaries built from the sources and patches.

1.2. THE LINUX KERNEL RPM PACKAGE OVERVIEW

The kernel RPM is a meta package that does not contain any files, but rather ensures that the following
sub-packages are properly installed:

kernel-core - contains a minimal number of kernel modules needed for core functionality. This
sub-package alone could be used in virtualized and cloud environments to provide a Red Hat
Enterprise Linux 8 kernel with a quick boot time and a small disk size footprint.

kernel-modules - contains further kernel modules.

kernel-modules-extra - contains kernel modules for rare hardware.

The small set of kernel sub-packages above aims to provide a reduced maintenance surface to system
administrators especially in virtualized and cloud environments.

The other common kernel packages are for example:

kernel-debug — Contains a kernel with numerous debugging options enabled for kernel
diagnosis, at the expense of reduced performance.

kernel-tools — Contains tools for manipulating the Linux kernel and supporting documentation.

kernel-devel — Contains the kernel headers and makefiles sufficient to build modules against
the kernel package.

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

6

kernel-abi-whitelists — Contains information pertaining to the Red Hat Enterprise Linux kernel
ABI, including a list of kernel symbols that are needed by external Linux kernel modules and a
yum plug-in to aid enforcement.

kernel-headers — Includes the C header files that specify the interface between the Linux
kernel and user-space libraries and programs. The header files define structures and constants
that are needed for building most standard programs.

1.3. DISPLAYING CONTENTS OF THE KERNEL PACKAGE

The following procedure describes how to view the contents of the kernel package and its sub-packages
without installing them using the rpm command.

Prerequisites

Obtained kernel, kernel-core, kernel-modules, kernel-modules-extra RPM packages for your
CPU architecture

Procedure

List modules for kernel:

$ rpm -qlp <kernel_rpm>
(contains no files)
…

List modules for kernel-core:

$ rpm -qlp <kernel-core_rpm>
…
/lib/modules/4.18.0-80.el8.x86_64/kernel/fs/udf/udf.ko.xz
/lib/modules/4.18.0-80.el8.x86_64/kernel/fs/xfs
/lib/modules/4.18.0-80.el8.x86_64/kernel/fs/xfs/xfs.ko.xz
/lib/modules/4.18.0-80.el8.x86_64/kernel/kernel
/lib/modules/4.18.0-80.el8.x86_64/kernel/kernel/trace
/lib/modules/4.18.0-80.el8.x86_64/kernel/kernel/trace/ring_buffer_benchmark.ko.xz
/lib/modules/4.18.0-80.el8.x86_64/kernel/lib
/lib/modules/4.18.0-80.el8.x86_64/kernel/lib/cordic.ko.xz
…

List modules for kernel-modules:

$ rpm -qlp <kernel-modules_rpm>
…
/lib/modules/4.18.0-80.el8.x86_64/kernel/drivers/infiniband/hw/mlx4/mlx4_ib.ko.xz
/lib/modules/4.18.0-80.el8.x86_64/kernel/drivers/infiniband/hw/mlx5/mlx5_ib.ko.xz
/lib/modules/4.18.0-80.el8.x86_64/kernel/drivers/infiniband/hw/qedr/qedr.ko.xz
/lib/modules/4.18.0-80.el8.x86_64/kernel/drivers/infiniband/hw/usnic/usnic_verbs.ko.xz
/lib/modules/4.18.0-
80.el8.x86_64/kernel/drivers/infiniband/hw/vmw_pvrdma/vmw_pvrdma.ko.xz
…

List modules for kernel-modules-extra:

CHAPTER 1. THE LINUX KERNEL RPM

7

$ rpm -qlp <kernel-modules-extra_rpm>
…
/lib/modules/4.18.0-80.el8.x86_64/extra/net/sched/sch_cbq.ko.xz
/lib/modules/4.18.0-80.el8.x86_64/extra/net/sched/sch_choke.ko.xz
/lib/modules/4.18.0-80.el8.x86_64/extra/net/sched/sch_drr.ko.xz
/lib/modules/4.18.0-80.el8.x86_64/extra/net/sched/sch_dsmark.ko.xz
/lib/modules/4.18.0-80.el8.x86_64/extra/net/sched/sch_gred.ko.xz
…

Additional resources

For information on how to use the rpm command on already installed kernel RPM, including its
sub-packages, see the rpm(8) manual page.

Introduction to RPM packages

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

8

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/packaging_and_distributing_software/index#rpm-packages_packaging-software

CHAPTER 2. UPDATING KERNEL WITH YUM
The following sections bring information about the Linux kernel provided and maintained by Red Hat
(Red Hat kernel), and how to keep the Red Hat kernel updated. As a consequence, the operating system
will have all the latest bug fixes, performance enhancements, and patches ensuring compatibility with
new hardware.

2.1. WHAT IS THE KERNEL

The kernel is a core part of a Linux operating system, which manages the system resources, and
provides interface between hardware and software applications. The Red Hat kernel is a custom-built
kernel based on the upstream Linux mainline kernel that Red Hat engineers further develop and harden
with a focus on stability and compatibility with the latest technologies and hardware.

Before Red Hat releases a new kernel version, the kernel needs to pass a set of rigorous quality
assurance tests.

The Red Hat kernels are packaged in the RPM format so that they are easy to upgrade and verify by the
yum package manager.

WARNING

Kernels that have not been compiled by Red Hat are not supported by Red Hat.

2.2. WHAT IS YUM

This section refers to description of the yum package manager.

Additional resources

For more information on yum see the relevant sections of Configuring basic system settings .

2.3. UPDATING THE KERNEL

The following procedure describes how to update the kernel using the yum package manager.

Procedure

1. To update the kernel, use the following:

yum update kernel

This command updates the kernel along with all dependencies to the latest available version.

2. Reboot your system for the changes to take effect.

NOTE

CHAPTER 2. UPDATING KERNEL WITH YUM

9

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_basic_system_settings/index#introduction-to-yum-functionality
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_basic_system_settings/index#installing-software-with-yum

NOTE

When upgrading from Red Hat Enterprise Linux 7 to Red Hat Enterprise Linux 8, follow
relevant sections of the Upgrading to RHEL 8 document.

2.4. INSTALLING THE KERNEL

The following procedure describes how to install new kernels using the yum package manager.

Procedure

To install a specific kernel version, use the following:

yum install kernel-{version}

Additional resources

For a list of available kernels, refer to Red Hat Code Browser .

For a list of release dates of specific kernel versions, see this article.

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

10

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/upgrading_to_rhel_8/index
https://access.redhat.com/labs/rhcb/
https://access.redhat.com/articles/3078

CHAPTER 3. MANAGING KERNEL MODULES
The following sections explain what kernel modules are, how to display their information, and how to
perform basic administrative tasks with kernel modules.

3.1. INTRODUCTION TO KERNEL MODULES

The Red Hat Enterprise Linux kernel can be extended with optional, additional pieces of functionality,
called kernel modules, without having to reboot the system. On Red Hat Enterprise Linux 8, kernel
modules are extra kernel code which is built into compressed <KERNEL_MODULE_NAME>.ko.xz
object files.

The most common functionality enabled by kernel modules are:

Device driver which adds support for new hardware

Support for a file system such as GFS2 or NFS

System calls

On modern systems, kernel modules are automatically loaded when needed. However, in some cases it is
necessary to load or unload modules manually.

Like the kernel itself, the modules can take parameters that customize their behavior if needed.

Tooling is provided to inspect which modules are currently running, which modules are available to load
into the kernel and which parameters a module accepts. The tooling also provides a mechanism to load
and unload kernel modules into the running kernel.

3.2. KERNEL MODULE DEPENDENCIES

Certain kernel modules sometimes depend on one or more other kernel modules. The
/lib/modules/<KERNEL_VERSION>/modules.dep file contains a complete list of kernel module
dependencies for the respective kernel version.

The dependency file is generated by the depmod program, which is a part of the kmod package. Many
of the utilities provided by kmod take module dependencies into account when performing operations
so that manual dependency-tracking is rarely necessary.

WARNING

The code of kernel modules is executed in kernel-space in the unrestricted mode.
Because of this, you should be mindful of what modules you are loading.

Additional resources

For more information about /lib/modules/<KERNEL_VERSION>/modules.dep, refer to the
modules.dep(5) manual page.

For further details including the synopsis and options of depmod, see the depmod(8) manual

CHAPTER 3. MANAGING KERNEL MODULES

11

For further details including the synopsis and options of depmod, see the depmod(8) manual
page.

3.3. LISTING CURRENTLY LOADED KERNEL MODULES

The following procedure describes how to view the currently loaded kernel modules.

Prerequisites

The kmod package is installed.

Procedure

To list all currently loaded kernel modules, execute:

$ lsmod

Module Size Used by
fuse 126976 3
uinput 20480 1
xt_CHECKSUM 16384 1
ipt_MASQUERADE 16384 1
xt_conntrack 16384 1
ipt_REJECT 16384 1
nft_counter 16384 16
nf_nat_tftp 16384 0
nf_conntrack_tftp 16384 1 nf_nat_tftp
tun 49152 1
bridge 192512 0
stp 16384 1 bridge
llc 16384 2 bridge,stp
nf_tables_set 32768 5
nft_fib_inet 16384 1
…

In the example above:

The first column provides the names of currently loaded modules.

The second column displays the amount of memory per module in kilobytes.

The last column shows the number, and optionally the names of modules that are
dependent on a particular module.

Additional resources

For more information about kmod, refer to the /usr/share/doc/kmod/README file or the
lsmod(8) manual page.

3.4. DISPLAYING INFORMATION ABOUT KERNEL MODULES

When working with a kernel module, you may want to see further information about that module. This
procedure describes how to display extra information about kernel modules.

Prerequisites

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

12

Prerequisites

The kmod package is installed.

Procedure

To display information about any kernel module, execute:

$ modinfo <KERNEL_MODULE_NAME>

For example:
$ modinfo virtio_net

filename: /lib/modules/4.18.0-94.el8.x86_64/kernel/drivers/net/virtio_net.ko.xz
license: GPL
description: Virtio network driver
rhelversion: 8.1
srcversion: 2E9345B281A898A91319773
alias: virtio:d00000001v*
depends: net_failover
intree: Y
name: virtio_net
vermagic: 4.18.0-94.el8.x86_64 SMP mod_unload modversions
…
parm: napi_weight:int
parm: csum:bool
parm: gso:bool
parm: napi_tx:bool

The modinfo command displays some detailed information about the specified kernel module.
You can query information about all available modules, regardless of whether they are loaded or
not. The parm entries show parameters the user is able to set for the module, and what type of
value they expect.

NOTE

When entering the name of a kernel module, do not append the .ko.xz extension
to the end of the name. Kernel module names do not have extensions; their
corresponding files do.

Additional resources

For more information about the modinfo, refer to the modinfo(8) manual page.

3.5. LOADING KERNEL MODULES AT SYSTEM RUNTIME

The optimal way to expand the functionality of the Linux kernel is by loading kernel modules. The
following procedure describes how to use the modprobe command to find and load a kernel module
into the currently running kernel.

Prerequisites

Root permissions

The kmod package is installed.

CHAPTER 3. MANAGING KERNEL MODULES

13

The respective kernel module is not loaded. To ensure this is the case, list the loaded kernel
modules.

Procedure

1. Select a kernel module you want to load.
The modules are located in the /lib/modules/$(uname -r)/kernel/<SUBSYSTEM>/ directory.

2. Load the relevant kernel module:

modprobe <MODULE_NAME>

NOTE

When entering the name of a kernel module, do not append the .ko.xz extension
to the end of the name. Kernel module names do not have extensions; their
corresponding files do.

3. Optionally, verify the relevant module was loaded:

$ lsmod | grep <MODULE_NAME>

If the module was loaded correctly, this command displays the relevant kernel module. For
example:

$ lsmod | grep serio_raw
serio_raw 16384 0

IMPORTANT

The changes described in this procedure will not persist after rebooting the system.

Additional resources

For further details about modprobe, see the modprobe(8) manual page.

3.6. UNLOADING KERNEL MODULES AT SYSTEM RUNTIME

At times, you find that you need to unload certain kernel modules from the running kernel. The following
procedure describes how to use the modprobe command to find and unload a kernel module at system
runtime from the currently loaded kernel.

Prerequisites

Root permissions

The kmod package is installed.

Procedure

1. Execute the lsmod command and select a kernel module you want to unload.

If a kernel module has dependencies, unload those prior to unloading the kernel module. For

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

14

If a kernel module has dependencies, unload those prior to unloading the kernel module. For
details on identifying modules with dependencies, see Section 3.3, “Listing currently loaded
kernel modules”.

2. Unload the relevant kernel module:

modprobe -r <MODULE_NAME>

When entering the name of a kernel module, do not append the .ko.xz extension to the end of
the name. Kernel module names do not have extensions; their corresponding files do.

WARNING

Do not unload kernel modules when they are used by the running system.
Doing so can lead to an unstable or non-operational system.

3. Optionally, verify the relevant module was unloaded:

$ lsmod | grep <MODULE_NAME>

If the module was unloaded successfully, this command does not display any output.

IMPORTANT

After finishing this procedure, the kernel modules that are defined to be automatically
loaded on boot, will not stay unloaded after rebooting the system. For information on
how to counter this outcome, see Preventing kernel modules from being automatically
loaded at system boot time.

Additional resources

For further details about modprobe, see the modprobe(8) manual page.

3.7. LOADING KERNEL MODULES AUTOMATICALLY AT SYSTEM
BOOT TIME

The following procedure describes how to configure a kernel module so that it is loaded automatically
during the boot process.

Prerequisites

Root permissions

The kmod package is installed.

Procedure

1. Select a kernel module you want to load during the boot process.
The modules are located in the /lib/modules/$(uname -r)/kernel/<SUBSYSTEM>/ directory.

CHAPTER 3. MANAGING KERNEL MODULES

15

2. Create a configuration file for the module:

echo <MODULE_NAME> > /etc/modules-load.d/<MODULE_NAME>.conf

NOTE

When entering the name of a kernel module, do not append the .ko.xz extension
to the end of the name. Kernel module names do not have extensions; their
corresponding files do.

3. Optionally, after reboot, verify the relevant module was loaded:

$ lsmod | grep <MODULE_NAME>

The example command above should succeed and display the relevant kernel module.

IMPORTANT

The changes described in this procedure will persist after rebooting the system.

Additional resources

For further details about loading kernel modules during the boot process, see the modules-
load.d(5) manual page.

3.8. PREVENTING KERNEL MODULES FROM BEING AUTOMATICALLY
LOADED AT SYSTEM BOOT TIME

The following procedure describes how to add a kernel module to a blacklist so that it will not be
automatically loaded during the boot process.

Prerequisites

Root permissions

The kmod package is installed.

Ensure that a blacklisted kernel module is not vital for your current system configuration.

Procedure

1. Select a kernel module that you want to blacklist:

$ lsmod

Module Size Used by
fuse 126976 3
xt_CHECKSUM 16384 1
ipt_MASQUERADE 16384 1
uinput 20480 1
xt_conntrack 16384 1
…

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

16

The lsmod command displays a list of modules loaded to the currently running kernel.

Alternatively, identify an unloaded kernel module you want to prevent from potentially
loading.
All kernel modules are located in the
/lib/modules/<KERNEL_VERSION>/kernel/<SUBSYSTEM>/ directory.

2. Create a blacklist configuration file:

vim /etc/modprobe.d/blacklist.conf

 # Blacklists <KERNEL_MODULE_1>
 blacklist <MODULE_NAME_1>
 install <MODULE_NAME_1> /bin/false

 # Blacklists <KERNEL_MODULE_2>
 blacklist <MODULE_NAME_2>
 install <MODULE_NAME_2> /bin/false

 # Blacklists <KERNEL_MODULE_n>
 blacklist <MODULE_NAME_n>
 install <MODULE_NAME_n> /bin/false
 …

The example shows the contents of the blacklist.conf file, edited by the vim editor. The
blacklist line ensures that the relevant kernel module will not be automatically loaded during
the boot process. The blacklist command, however, does not prevent the module from being
loaded as a dependency for another kernel module that is not blacklisted. Therefore the install
line causes the /bin/false to run instead of installing a module.

The lines starting with a hash sign are comments to make the file more readable.

NOTE

When entering the name of a kernel module, do not append the .ko.xz extension
to the end of the name. Kernel module names do not have extensions; their
corresponding files do.

3. Create a backup copy of the current initial ramdisk image before rebuilding:

cp /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).bak.$(date +%m-%d-
%H%M%S).img

The command above creates a backup initramfs image in case the new version has an
unexpected problem.

Alternatively, create a backup copy of other initial ramdisk image which corresponds to the
kernel version for which you want to blacklist kernel modules:

cp /boot/initramfs-<SOME_VERSION>.img /boot/initramfs-
<SOME_VERSION>.img.bak.$(date +%m-%d-%H%M%S)

4. Generate a new initial ramdisk image to reflect the changes:

CHAPTER 3. MANAGING KERNEL MODULES

17

dracut -f -v

If you are building an initial ramdisk image for a different kernel version than you are
currently booted into, specify both target initramfs and kernel version:

dracut -f -v /boot/initramfs-<TARGET_VERSION>.img
<CORRESPONDING_TARGET_KERNEL_VERSION>

5. Reboot the system:

$ reboot

IMPORTANT

The changes described in this procedure will take effect and persist after rebooting the
system. Improper blacklisting of a key kernel module can result in an unstable or non-
operational system.

Additional resources

For further details concerning the dracut utility, refer to the dracut(8) manual page.

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

18

CHAPTER 4. CONFIGURING KERNEL COMMAND LINE
PARAMETERS

Kernel command line parameters are a way to change the behavior of certain aspects of the Red Hat
Enterprise Linux kernel at boot time. As a system administrator, you have full control over what options
get set at boot. Certain kernel behaviors are only able to be set at boot time, so understanding how to
make this changes is a key administration skill.

IMPORTANT

Opting to change the behavior of the system by modifying kernel command line
parameters may have negative effects on your system. You should therefore test
changes prior to deploying them in production. For further guidance, contact Red Hat
Support.

4.1. WHAT ARE KERNEL COMMAND LINE PARAMETERS

Kernel command line parameters are used for boot time configuration of:

The Red Hat Enterprise Linux kernel

The initial RAM disk

The user space features

Kernel boot time parameters are often used to overwrite default values and for setting specific
hardware settings.

By default, the kernel command line parameters for systems using the GRUB2 bootloader are defined in
the kernelopts variable of the /boot/grub2/grubenv file for all kernel boot entries.

NOTE

For IBM Z, the kernel command line parameters are stored in the boot entry config file
because the zipl bootloader does not support environment variables. Thus, the
kernelopts environment variable cannot be used.

Additional resources

For more information about what kernel command line parameters you can modify, see kernel-
command-line(7), bootparam(7) and dracut.cmdline(7) manual pages.

4.2. WHAT IS GRUBBY

grubby is a utility for manipulating bootloader-specific configuration files.

You can use grubby also for changing the default boot entry, and for adding/removing arguments from
a GRUB2 menu entry.

For more details see the grubby(8) manual page.

4.3. WHAT ARE BOOT ENTRIES

A boot entry is a collection of options which are stored in a configuration file and tied to a particular

CHAPTER 4. CONFIGURING KERNEL COMMAND LINE PARAMETERS

19

A boot entry is a collection of options which are stored in a configuration file and tied to a particular
kernel version. In practice, you have at least as many boot entries as your system has installed kernels.
The boot entry configuration file is located in the /boot/loader/entries/ directory and can look like this:

6f9cc9cb7d7845d49698c9537337cedc-4.18.0-5.el8.x86_64.conf

The file name above consists of a machine ID stored in the /etc/machine-id file, and a kernel version.

The boot entry configuration file contains information about the kernel version, the initial ramdisk image,
and the kernelopts environment variable, which contains the kernel command line parameters. The
contents of a boot entry config can be seen below:

title Red Hat Enterprise Linux (4.18.0-74.el8.x86_64) 8.0 (Ootpa)
version 4.18.0-74.el8.x86_64
linux /vmlinuz-4.18.0-74.el8.x86_64
initrd /initramfs-4.18.0-74.el8.x86_64.img $tuned_initrd
options $kernelopts $tuned_params
id rhel-20190227183418-4.18.0-74.el8.x86_64
grub_users $grub_users
grub_arg --unrestricted
grub_class kernel

The kernelopts environment variable is defined in the /boot/grub2/grubenv file.

4.4. SETTING KERNEL COMMAND LINE PARAMETERS

This section explains how to change kernel command line parameters on the AMD64 and Intel 64
architectures, the 64-bit ARM architectures, and the little-endian variant of IBM Power Systems.

4.4.1. Changing kernel command line parameters for all boot entries

This procedure describes how to change kernel command line parameters for all boot entries on your
system.

Prerequisites

Introduction to kernel command line parameters

Procedure

1. Open the /etc/default/grub file with the vim editor:

vim /etc/default/grub
GRUB_TIMEOUT=5
GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"
GRUB_DEFAULT=saved
GRUB_DISABLE_SUBMENU=true
GRUB_TERMINAL_OUTPUT="console"
GRUB_CMDLINE_LINUX="crashkernel=auto resume=/dev/mapper/rhel-swap
rd.lvm.lv=rhel/root rd.lvm.lv=rhel/swap rhgb quiet"
GRUB_DISABLE_RECOVERY="true"
GRUB_ENABLE_BLSCFG=true

2. Add, edit, or remove a parameter on the GRUB_CMDLINE_LINUX line.

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

20

3. Update the GRUB2 configuration file:

grub2-mkconfig -o /boot/grub2/grub.cfg

4. Reboot your system for the changes to take effect.

As a result, the boot loader is reconfigured, and the kernel command line parameters that you specified
are applied.

Additional resources

For more information on how to modify the kernel parameters using the GRUB2 configuration
file, see Editing a Menu Entry .

4.4.2. Changing kernel command line parameters for a single boot entry

This procedure describes how to change kernel command line parameters for a single boot entry on your
system.

Prerequisites

Introduction to kernel command line parameters

grubby(8) manual page

Procedure

To add a parameter execute the following:

grubby --update-kernel=/boot/vmlinuz-$(uname -r) --args="<NEW_PARAMETER>"

To remove a parameter use the following:

grubby --update-kernel=/boot/vmlinuz-$(uname -r) --remove-args="
<PARAMETER_TO_REMOVE>"

NOTE

By default, there is the options parameter for each kernel boot entry, which is set to the
kernelopts variable. This variable is defined in the /boot/grub2/grubenv configuration
file.

IMPORTANT

When you use the grubby utility to modify a specific boot entry, the contents of the
edited kernelopts are stored in the relevant kernel boot entry in
/boot/loader/entries/<RELEVANT_KERNEL_BOOT_ENTRY.conf> and will override the
value of kernelopts set in /boot/grub2/grubenv.

Additional resources

For further examples on how to use grubby see grubby tool.

CHAPTER 4. CONFIGURING KERNEL COMMAND LINE PARAMETERS

21

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system_administrators_guide/#sec-Editing_a_Menu_Entry
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sec-making_persistent_changes_to_a_grub_2_menu_using_the_grubby_tool

CHAPTER 5. CONFIGURING KERNEL PARAMETERS AT
RUNTIME

As a system administrator, you can modify many facets of the Red Hat Enterprise Linux kernel’s
behavior at runtime. This section describes how to configure kernel parameters at runtime by using the
sysctl command and by modifying the configuration files in the /etc/sysctl.d/ and /proc/sys/ directories.

5.1. WHAT ARE KERNEL PARAMETERS

Kernel parameters are tunable values which you can adjust while the system is running. There is no
requirement to reboot or recompile the kernel for changes to take effect.

It is possible to address the kernel parameters through:

+ * The sysctl command * The virtual file system mounted at the /proc/sys/ directory * The
configuration files in the /etc/sysctl.d/ directory

Tunables are divided into classes by the kernel subsystem. Red Hat Enterprise Linux has the following
tunable classes:

Table 5.1. Table of sysctl classes

Tunable class Subsystem

abi Execution domains and personalities

crypto Cryptographic interfaces

debug Kernel debugging interfaces

dev Device-specific information

fs Global and specific file system tunables

kernel Global kernel tunables

net Network tunables

sunrpc Sun Remote Procedure Call (NFS)

user User Namespace limits

vm Tuning and management of memory, buffers, and
cache

Additional resources

For more information about sysctl, see sysctl(8) manual pages.

For more information about /etc/sysctl.d/ see, sysctl.d(5) manual pages.

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

22

5.2. SETTING KERNEL PARAMETERS AT RUNTIME

IMPORTANT

Configuring kernel parameters on a production system requires careful planning.
Unplanned changes may render the kernel unstable, requiring a system reboot. Verify
that you are using valid options before changing any kernel values.

5.2.1. Configuring kernel parameters temporarily with sysctl

The following procedure describes how to use the sysctl command to temporarily set kernel
parameters at runtime. The command is also useful for listing and filtering tunables.

Prerequisites

Kernel parameters introduction

Root permissions

Procedure

1. To list all parameters and their values, use the following:

sysctl -a

NOTE

The # sysctl -a command displays kernel parameters, which can be adjusted at
runtime and at boot time.

2. To configure a parameter temporarily, use the command as in the following example:

sysctl <TUNABLE_CLASS>.<PARAMETER>=<TARGET_VALUE>

The sample command above changes the parameter value while the system is running. The
changes take effect immediately, without a need for restart.

NOTE

The changes return back to default after your system reboots.

Additional resources

For more information about sysctl, see the sysctl(8) manual page.

To permanently modify kernel parameters, either use the sysctl command to write the values to
the /etc/sysctl.conf file or make manual changes to the configuration files in the /etc/sysctl.d/
directory.

5.2.2. Configuring kernel parameters permanently with sysctl

The following procedure describes how to use the sysctl command to permanently set kernel

CHAPTER 5. CONFIGURING KERNEL PARAMETERS AT RUNTIME

23

The following procedure describes how to use the sysctl command to permanently set kernel
parameters.

Prerequisites

Kernel parameters introduction

Root permissions

Procedure

1. To list all parameters, use the following:

sysctl -a

The command displays all kernel parameters that can be configured at runtime.

2. To configure a parameter permanently:

sysctl -w <TUNABLE_CLASS>.<PARAMETER>=<TARGET_VALUE> >>
/etc/sysctl.conf

The sample command changes the tunable value and writes it to the /etc/sysctl.conf file, which
overrides the default values of kernel parameters. The changes take effect immediately and
persistently, without a need for restart.

NOTE

To permanently modify kernel parameters you can also make manual changes to the
configuration files in the /etc/sysctl.d/ directory.

Additional resources

For more information about sysctl, see the sysctl(8) and sysctl.conf(5) manual pages.

For more information about using the configuration files in the /etc/sysctl.d/ directory to make
permanent changes to kernel parameters, see Using configuration files in /etc/sysctl.d/ to
adjust kernel parameters section.

5.2.3. Using configuration files in /etc/sysctl.d/ to adjust kernel parameters

The following procedure describes how to manually modify configuration files in the /etc/sysctl.d/
directory to permanently set kernel parameters.

Prerequisites

Kernel parameters introduction

Root permissions

Procedure

1. Create a new configuration file in /etc/sysctl.d/:

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

24

vim /etc/sysctl.d/<some_file.conf>

2. Include kernel parameters, one per line, as follows:

<TUNABLE_CLASS>.<PARAMETER>=<TARGET_VALUE>
<TUNABLE_CLASS>.<PARAMETER>=<TARGET_VALUE>

3. Save the configuration file.

4. Reboot the machine for the changes to take effect.

Alternatively, to apply changes without rebooting, execute:

sysctl -p /etc/sysctl.d/<some_file.conf>

The command enables you to read values from the configuration file, which you created
earlier.

Additional resources

For more information about sysctl, see the sysctl(8) manual page.

For more information about /etc/sysctl.d/, see the sysctl.d(5) manual page.

5.2.4. Configuring kernel parameters temporarily through /proc/sys/

The following procedure describes how to set kernel parameters temporarily through the files in the
virtual file system /proc/sys/ directory.

Prerequisites

Kernel parameters introduction

Root permissions

Procedure

1. Identify a kernel parameter you want to configure:

ls -l /proc/sys/<TUNABLE_CLASS>/

The writable files returned by the command can be used to configure the kernel. The files with
read-only permissions provide feedback on the current settings.

2. Assign a target value to the kernel parameter:

echo <TARGET_VALUE> > /proc/sys/<TUNABLE_CLASS>/<PARAMETER>

The command makes configuration changes that will disappear once the system is restarted.

3. Optionally, verify the value of the newly set kernel parameter:

cat /proc/sys/<TUNABLE_CLASS>/<PARAMETER>

CHAPTER 5. CONFIGURING KERNEL PARAMETERS AT RUNTIME

25

Additional resources

To permanently modify kernel parameters, either use the sysctl command or make manual
changes to the configuration files in the /etc/sysctl.d/ directory.

5.3. KEEPING KERNEL PANIC PARAMETERS DISABLED IN
VIRTUALIZED ENVIRONMENTS

When configuring a virtualized environment in Red Hat Enterprise Linux 8 (RHEL 8), you should not
enable the softlockup_panic and nmi_watchdog kernel parameters, as the virtualized environment
may trigger a spurious soft lockup that should not require a system panic.

The following sections explain the reasons behind this advice by summarizing:

What causes a soft lockup.

Describing the kernel parameters that control a system’s behavior on a soft lockup.

Explaining how soft lockups may be triggered in a virtualized environment.

5.3.1. What is a soft lockup

A soft lockup is a situation usually caused by a bug, when a task is executing in kernel space on a CPU
without rescheduling. The task also does not allow any other task to execute on that particular CPU. As a
result, a warning is displayed to a user through the system console. This problem is also referred to as
the soft lockup firing.

Additional resources

For a technical reason behind a soft lockup, example log messages, and other details, see the
following Knowledge Article.

5.3.2. Parameters controlling kernel panic

The following kernel parameters can be set to control a system’s behavior when a soft lockup is
detected.

softlockup_panic

Controls whether or not the kernel will panic when a soft lockup is detected.

Type Value Effect

Integer 0 kernel does not panic on soft
lockup

Integer 1 kernel panics on soft lockup

By default, on RHEL8 this value is 0.

In order to panic, the system needs to detect a hard lockup first. The detection is controlled by the
nmi_watchdog parameter.

nmi_watchdog

Controls whether lockup detection mechanisms (watchdogs) are active or not. This parameter is of

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

26

https://access.redhat.com/articles/371803

Controls whether lockup detection mechanisms (watchdogs) are active or not. This parameter is of
integer type.

Value Effect

0 disables lockup detector

1 enables lockup detector

The hard lockup detector monitors each CPU for its ability to respond to interrupts.

watchdog_thresh

Controls frequency of watchdog hrtimer, NMI events, and soft/hard lockup thresholds.

Default threshold Soft lockup threshold

10 seconds 2 * watchdog_thresh

Setting this parameter to zero disables lockup detection altogether.

Additional resources

For further information about nmi_watchdog and softlockup_panic, see the Softlockup
detector and hardlockup detector document.

For more details about watchdog_thresh, see the Kernel sysctl document.

5.3.3. Spurious soft lockups in virtualized environments

The soft lockup firing on physical hosts, as described in Section 5.3.1, “What is a soft lockup” , usually
represents a kernel or hardware bug. The same phenomenon happening on guest operating systems in
virtualized environments may represent a false warning.

Heavy work-load on a host or high contention over some specific resource such as memory, usually
causes a spurious soft lockup firing. This is because the host may schedule out the guest CPU for a
period longer than 20 seconds. Then when the guest CPU is again scheduled to run on the host, it
experiences a time jump which triggers due timers. The timers include also watchdog hrtimer, which can
consequently report a soft lockup on the guest CPU.

Because a soft lockup in a virtualized environment may be spurious, you should not enable the kernel
parameters that would cause a system panic when a soft lockup is reported on a guest CPU.

IMPORTANT

To understand soft lockups in guests, it is essential to know that the host schedules the
guest as a task, and the guest then schedules its own tasks.

Additional resources

For soft lockup definition and technicalities behind its functioning, see Section 5.3.1, “What is a
soft lockup”.

CHAPTER 5. CONFIGURING KERNEL PARAMETERS AT RUNTIME

27

https://www.kernel.org/doc/Documentation/lockup-watchdogs.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt

To learn about components of RHEL 8 virtualized environments and their interaction, see RHEL
8 virtual machine components and their interaction.

5.4. ADJUSTING KERNEL PARAMETERS FOR DATABASE SERVERS

There are different sets of kernel parameters which can affect performance of specific database
applications. The following sections explain what kernel parameters to configure to secure efficient
operation of database servers and databases.

5.4.1. Introduction to database servers

A database server is a hardware device which has a certain amount of main memory, and a database
(DB) application installed. This DB application provides services as a means of writing the cached data
from the main memory, which is usually small and expensive, to DB files (database). These services are
provided to multiple clients on a network. There can be as many DB servers as a machine’s main memory
and storage allows.

Red Hat Enterprise Linux 8 provides the following database applications:

MariaDB 10.3

MySQL 8.0

PostgreSQL 10

PostgreSQL 9.6

5.4.2. Parameters affecting performance of database applications

The following kernel parameters affect performance of database applications.

fs.aio-max-nr

Defines the maximum number of asynchronous I/O operations the system can handle on the server.

NOTE

Raising the fs.aio-max-nr parameter produces no additional changes beyond
increasing the aio limit.

fs.file-max

Defines the maximum number of file handles (temporary file names or IDs assigned to open files) the
system supports at any instance.
The kernel dynamically allocates file handles whenever a file handle is requested by an application.
The kernel however does not free these file handles when they are released by the application. The
kernel recycles these file handles instead. This means that over time the total number of allocated
file handles will increase even though the number of currently used file handles may be low.

kernel.shmall

Defines the total number of shared memory pages that can be used system-wide. To use the entire
main memory, the value of the kernel.shmall parameter should be ≤ total main memory size.

kernel.shmmax

Defines the maximum size in bytes of a single shared memory segment that a Linux process can

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

28

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_virtualization/index#rhel-8-virtual-machine-components-and-their-interaction_virt-overview

Defines the maximum size in bytes of a single shared memory segment that a Linux process can
allocate in its virtual address space.

kernel.shmmni

Defines the maximum number of shared memory segments the database server is able to handle.

net.ipv4.ip_local_port_range

Defines the port range the system can use for programs which want to connect to a database server
without a specific port number.

net.core.rmem_default

Defines the default receive socket memory through Transmission Control Protocol (TCP).

net.core.rmem_max

Defines the maximum receive socket memory through Transmission Control Protocol (TCP).

net.core.wmem_default

Defines the default send socket memory through Transmission Control Protocol (TCP).

net.core.wmem_max

Defines the maximum send socket memory through Transmission Control Protocol (TCP).

vm.dirty_bytes / vm.dirty_ratio

Defines a threshold in bytes / in percentage of dirty-able memory at which a process generating
dirty data is started in the write() function.

NOTE

Either vm.dirty_bytes or vm.dirty_ratio can be specified at a time.

vm.dirty_background_bytes / vm.dirty_background_ratio

Defines a threshold in bytes / in percentage of dirty-able memory at which the kernel tries to actively
write dirty data to hard-disk.

NOTE

Either vm.dirty_background_bytes or vm.dirty_background_ratio can be specified at
a time.

vm.dirty_writeback_centisecs

Defines a time interval between periodic wake-ups of the kernel threads responsible for writing dirty
data to hard-disk.
This kernel parameters measures in 100th’s of a second.

vm.dirty_expire_centisecs

Defines the time after which dirty data is old enough to be written to hard-disk.
This kernel parameters measures in 100th’s of a second.

Additional resources

For explanation of dirty data writebacks, how they work, and what kernel parameters relate to
them, see the Dirty pagecache writeback and vm.dirty parameters document.

CHAPTER 5. CONFIGURING KERNEL PARAMETERS AT RUNTIME

29

https://access.redhat.com/articles/45002#control-parameters-4

CHAPTER 6. GETTING STARTED WITH KERNEL LOGGING
Log files are files that contain messages about the system, including the kernel, services, and
applications running on it. The logging system in Red Hat Enterprise Linux is based on the built-in
syslog protocol. Various utilities use this system to record events and organize them into log files.
These files are useful when auditing the operating system or troubleshooting problems.

6.1. WHAT IS THE KERNEL RING BUFFER

During the boot process, the console provides a lot of important information about the initial phase of
the system startup. To avoid loss of the early messages the kernel utilizes what is called a ring buffer.
This buffer stores all messages, including boot messages, generated by the printk() function within the
kernel code. The messages from the kernel ring buffer are then read and stored in log files on
permanent storage, for example, by the syslog service.

The buffer mentioned above is a cyclic data structure which has a fixed size, and is hard-coded into the
kernel. Users can display data stored in the kernel ring buffer through the dmesg command or the
/var/log/boot.log file. When the ring buffer is full, the new data overwrites the old.

Additional resources

For more information about syslog, see the syslog(2) manual page.

For more details on how to examine or control boot log messages with dmesg, see the
dmesg(1) manual page.

6.2. ROLE OF PRINTK ON LOG-LEVELS AND KERNEL LOGGING

Each message the kernel reports has a log-level associated with it that defines the importance of the
message. The kernel ring buffer, as described in Section 6.1, “What is the kernel ring buffer” , collects
kernel messages of all log-levels. It is the kernel.printk parameter that defines what messages from the
buffer are printed to the console.

The log-level values break down in this order:

0 — Kernel emergency. The system is unusable.

1 — Kernel alert. Action must be taken immediately.

2 — Condition of the kernel is considered critical.

3 — General kernel error condition.

4 — General kernel warning condition.

5 — Kernel notice of a normal but significant condition.

6 — Kernel informational message.

7 — Kernel debug-level messages.

By default, kernel.printk in RHEL 8 contains the following four values:

sysctl kernel.printk
kernel.printk = 7 4 1 7

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

30

The four values define the following:

1. value. Console log-level, defines the lowest priority of messages printed to the console.

2. value. Default log-level for messages without an explicit log-level attached to them.

3. value. Sets the lowest possible log-level configuration for the console log-level.

4. value. Sets default value for the console log-level at boot time.
Each of these values above defines a different rule for handling error messages.

NOTE

Certain kernel command line parameters, such as quiet or debug, change the default
kernel.printk values.

Additional resources

For more information on kernel.printk and log-levels, see the syslog(2) manual page.

CHAPTER 6. GETTING STARTED WITH KERNEL LOGGING

31

CHAPTER 7. INSTALLING AND CONFIGURING KDUMP

7.1. WHAT IS KDUMP

kdump is a service providing a crash dumping mechanism. The service enables you to save the contents
of the system’s memory for later analysis. kdump uses the kexec system call to boot into the second
kernel (a capture kernel) without rebooting; and then captures the contents of the crashed kernel’s
memory (a crash dump or a vmcore) and saves it. The second kernel resides in a reserved part of the
system memory.

IMPORTANT

A kernel crash dump can be the only information available in the event of a system failure
(a critical bug). Therefore, ensuring that kdump is operational is important in mission-
critical environments. Red Hat advise that system administrators regularly update and
test kexec-tools in your normal kernel update cycle. This is especially important when new
kernel features are implemented.

7.2. INSTALLING KDUMP

In many cases, the kdump service is installed and activated by default on the new Red Hat
Enterprise Linux installations. The Anaconda installer provides a screen for kdump configuration when
performing an interactive installation using the graphical or text interface. The installer screen is titled
Kdump and is available from the main Installation Summary screen, and only allows limited
configuration - you can only select whether kdump is enabled and how much memory is reserved.

Some installation options, such as custom Kickstart installations, in some cases do not install or enable
kdump by default. If this is the case on your system, follow the procedure below to install kdump.

Prerequisites

An active Red Hat Enterprise Linux subscription

A repository containing the kexec-tools package for your system CPU architecture

Fulfilled kdump requirements

Procedure

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

32

1. Execute the following command to check whether kdump is installed on your system:

$ rpm -q kexec-tools

Output if the package is installed:

kexec-tools-2.0.17-11.el8.x86_64

Output if the package is not installed:

package kexec-tools is not installed

2. Install kdump and other necessary packages by:

yum install kexec-tools

IMPORTANT

Starting with Red Hat Enterprise Linux 7.4 (kernel-3.10.0-693.el7) the Intel IOMMU
driver is supported with kdump. For prior versions, Red Hat Enterprise Linux 7.3 (kernel-
3.10.0-514[.XYZ].el7) and earlier, it is advised that Intel IOMMU support is disabled,
otherwise kdump kernel is likely to become unresponsive.

Additional resources

Information about memory requirements for kdump is available in Section 7.5.1, “Memory
requirements for kdump”.

7.3. CONFIGURING KDUMP ON THE COMMAND LINE

7.3.1. Configuring kdump memory usage

The memory reserved for the kdump feature is always reserved during the system boot. The amount of
memory is specified in the system’s Grand Unified Bootloader (GRUB) 2 configuration. The procedure
below describes how to configure the memory reserved for kdump through the command line.

Prerequisites

Fulfilled kdump requirements

Procedure

1. Edit the /etc/default/grub file using the root permissions.

2. Set the crashkernel= option to the required value.
For example, to reserve 128 MB of memory, use the following:

crashkernel=128M

Alternatively, you can set the amount of reserved memory to a variable depending on the total
amount of installed memory. The syntax for memory reservation into a variable is
crashkernel=<range1>:<size1>,<range2>:<size2>. For example:

CHAPTER 7. INSTALLING AND CONFIGURING KDUMP

33

crashkernel=512M-2G:64M,2G-:128M

The above example reserves 64 MB of memory if the total amount of system memory is 512 MB
or higher and lower than 2 GB. If the total amount of memory is more than 2 GB, 128 MB is
reserved for kdump instead.

Offset the reserved memory.
Some systems require to reserve memory with a certain fixed offset since crashkernel
reservation is very early, and it wants to reserve some area for special usage. If the offset is
set, the reserved memory begins there. To offset the reserved memory, use the following
syntax:

crashkernel=128M@16M

The example above means that kdump reserves 128 MB of memory starting at 16 MB
(physical address 0x01000000). If the offset parameter is set to 0 or omitted entirely,
kdump offsets the reserved memory automatically. This syntax can also be used when
setting a variable memory reservation as described above; in this case, the offset is always
specified last (for example, crashkernel=512M-2G:64M,2G-:128M@16M).

3. Use the following command to update the GRUB2 configuration file:

grub2-mkconfig -o /boot/grub2/grub.cfg

NOTE

The alternative way to configure memory for kdump is to append the crashkernel=
<SOME_VALUE> parameter to the kernelopts variable with the grub2-editenv which
will update all of your boot entries. Or you can use the grubby utility to update kernel
command line parameters of just one entry.

Additional resources

The crashkernel= option can be defined in multiple ways. The auto value enables automatic
configuration of reserved memory based on the total amount of memory in the system,
following the guidelines described in Section 7.5.1, “Memory requirements for kdump” .

For more information on boot entries, kernelopts, and how to work with grub2-editenv and
grubby see Chapter 4, Configuring kernel command line parameters .

7.3.2. Configuring the kdump target

When a kernel crash is captured, the core dump can be either stored as a file in a local file system,
written directly to a device, or sent over a network using the NFS (Network File System) or SSH (Secure
Shell) protocol. Only one of these options can be set at a time, and the default behavior is to store the
vmcore file in the /var/crash/ directory of the local file system.

Prerequisites

Fulfilled kdump requirements

Procedure

To change the local directory in which the core dump is to be saved, as root, edit the /etc/kdump.conf

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

34

To change the local directory in which the core dump is to be saved, as root, edit the /etc/kdump.conf
configuration file as described below.

1. Remove the hash sign ("#") from the beginning of the #path /var/crash line.

2. Replace the value with the intended directory path. For example:

path /usr/local/cores

IMPORTANT

In Red Hat Enterprise Linux 8, the directory defined as the kdump target using
the path directive must exist when the kdump systemd service is started -
otherwise the service fails. This behavior is different from earlier releases of
Red Hat Enterprise Linux, where the directory was being created automatically if
it did not exist when starting the service.

To write the file to a different partition, as root, edit the /etc/kdump.conf configuration file as described
below.

1. Remove the hash sign ("#") from the beginning of the #ext4 line, depending on your choice.

device name (the #ext4 /dev/vg/lv_kdump line)

file system label (the #ext4 LABEL=/boot line)

UUID (the #ext4 UUID=03138356-5e61-4ab3-b58e-27507ac41937 line)

2. Change the file system type as well as the device name, label or UUID to the desired values. For
example:

ext4 UUID=03138356-5e61-4ab3-b58e-27507ac41937

IMPORTANT

It is recommended to specify storage devices using a LABEL= or UUID=. Disk
device names such as /dev/sda3 are not guaranteed to be consistent across
reboot.

IMPORTANT

When dumping to Direct Access Storage Device (DASD) on IBM Z hardware, it is
essential that the dump devices are correctly specified in /etc/dasd.conf before
proceeding.

To write the dump directly to a device:

1. Remove the hash sign ("#") from the beginning of the #raw /dev/vg/lv_kdump line.

2. Replace the value with the intended device name. For example:

raw /dev/sdb1

To store the dump to a remote machine using the NFS protocol:

CHAPTER 7. INSTALLING AND CONFIGURING KDUMP

35

1. Remove the hash sign ("#") from the beginning of the #nfs my.server.com:/export/tmp line.

2. Replace the value with a valid hostname and directory path. For example:

nfs penguin.example.com:/export/cores

To store the dump to a remote machine using the SSH protocol:

1. Remove the hash sign ("#") from the beginning of the #ssh user@my.server.com line.

2. Replace the value with a valid username and hostname.

3. Include your SSH key in the configuration.

Remove the hash sign from the beginning of the #sshkey /root/.ssh/kdump_id_rsa line.

Change the value to the location of a key valid on the server you are trying to dump to. For
example:

ssh john@penguin.example.com
sshkey /root/.ssh/mykey

Additional resources

For a complete list of currently supported and unsupported targets sorted by type, see
Section 7.5.3, “Supported kdump targets” .

For information on how to configure an SSH server and set up a key-based authentication, see
Configuring basic system settings in Red Hat Enterprise Linux.

7.3.3. Configuring the core collector

kdump uses a program specified as core collector to capture the vmcore. Currently, the only fully
supported core collector is the makedumpfile utility. It has several configurable options, which affect
the collection process. For example the extent of collected data, or whether the resulting vmcore should
be compressed.

To enable and configure the core collector, follow the procedure below.

Prerequisites

Fulfilled kdump requirements

Procedure

1. As root, edit the /etc/kdump.conf configuration file and remove the hash sign ("#") from the
beginning of the #core_collector makedumpfile -l --message-level 1 -d 31.

2. Add the -c parameter. For example:

core_collector makedumpfile -c

The command above enables the dump file compression.

3. Add the -d value parameter. For example:

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

36

mailto:user@my.server.com
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_basic_system_settings/index#sec-SSH

core_collector makedumpfile -d 17 -c

The command above removes both zero and free pages from the dump. The value represents a
bitmask, where each bit is associated with a certain type of memory pages and determines
whether that type of pages will be collected. For description of respective bits see
Section 7.5.4, “Supported kdump filtering levels” .

Additional resources

See the makedumpfile(8) man page for a complete list of available options.

7.3.4. Configuring the kdump default failure responses

By default, when kdump fails to create a vmcore dump file at the target location specified in
Section 7.3.2, “Configuring the kdump target” , the system reboots, and the dump is lost in the process.
To change this behavior, follow the procedure below.

Prerequisites

Fulfilled kdump requirements

Procedure

1. As root, remove the hash sign ("#") from the beginning of the #default shell line in the
/etc/kdump.conf configuration file.

2. Replace the value with a desired action as described in Section 7.5.5, “Supported default failure
responses”. For example:

default poweroff

7.3.5. Enabling and disabling the kdump service

To start the kdump service at boot time, follow the procedure below.

Prerequisites

Fulfilled kdump requirements.

All configuration is set up according to your needs.

Procedure

1. To enable the kdump service, use the following command:

systemctl enable kdump.service

This enables the service for multi-user.target.

2. To start the service in the current session, use the following command:

systemctl start kdump.service

CHAPTER 7. INSTALLING AND CONFIGURING KDUMP

37

3. To stop the kdump service, type the following command:

systemctl stop kdump.service

4. To disable the kdump service, execute the following command:

systemctl disable kdump.service

Additional resources

For more information on systemd and configuring services in general, see Configuring basic
system settings in Red Hat Enterprise Linux.

7.4. CONFIGURING KDUMP IN THE WEB CONSOLE

The following sections provide an overview of how to setup and test the kdump configuration through
the Red Hat Enterprise Linux web console. The web console is part of a default installation of Red Hat
Enterprise Linux 8 and enables or disables the kdump service at boot time. Further, the web console
conveniently enables you to configure the reserved memory for kdump; or to select the vmcore saving
location in an uncompressed or compressed format.

Prerequisites

See Red Hat Enterprise Linux web console for further details.

7.4.1. Configuring kdump memory usage and target location in web console

The procedure below shows you how to use the Kernel Dump tab in the Red Hat Enterprise Linux web
console interface to configure the amount of memory that is reserved for the kdump kernel. The
procedure also describes how to specify the target location of the vmcore dump file and how to test
your configuration.

Prerequisites

Introduction to operating the web console

Procedure

1. Open the Kernel Dump tab and start the kdump service.

2. Configure the kdump memory usage through the command line .

3. Click the link next to the Crash dump location option.

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

38

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_basic_system_settings/index#managing-services-with-systemd
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_systems_using_the_web_console/index#getting-started-with-the-rhel-8-web-console_system-management-using-the-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_systems_using_the_web_console/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_monitoring_and_updating_the_kernel/index#configuring-kdump-memory-usage_configuring-kdump-on-the-command-line

4. Select the Local Filesystem option from the drop-down and specify the directory you want to
save the dump in.

Alternatively, select the Remote over SSH option from the drop-down to send the vmcore
to a remote machine using the SSH protocol.
Fill the Server, ssh key, and Directory fields with the remote machine address, ssh key
location, and a target directory.

Another choice is to select the Remote over NFS option from the drop-down and fill the
Mount field to send the vmcore to a remote machine using the NFS protocol.

NOTE

Tick the Compression check box to reduce the size of the vmcore file.

5. Test your configuration by crashing the kernel.

CHAPTER 7. INSTALLING AND CONFIGURING KDUMP

39

WARNING

This step disrupts execution of the kernel and results in a system crash and
loss of data.

Additional resources

For a complete list of currently supported targets for kdump, see Supported kdump targets .

For information on how to configure an SSH server and set up a key-based authentication, see
Configuring basic system settings in Red Hat Enterprise Linux.

7.5. SUPPORTED KDUMP CONFIGURATIONS AND TARGETS

7.5.1. Memory requirements for kdump

In order for kdump to be able to capture a kernel crash dump and save it for further analysis, a part of
the system memory has to be permanently reserved for the capture kernel. When reserved, this part of
the system memory is not available to the main kernel.

The memory requirements vary based on certain system parameters. One of the major factors is the
system’s hardware architecture. To find out the exact machine architecture (such as Intel 64 and
AMD64, also known as x86_64) and print it to standard output, use the following command:

$ uname -m

The table below contains a list of minimum memory requirements to automatically reserve a memory
size for kdump. The size changes according to the system’s architecture and total available physical
memory.

Table 7.1. Minimum Amount of Reserved Memory Required for kdump

Architecture Available Memory Minimum Reserved Memory

AMD64 and Intel 64 (x86_64) 1 GB to 64 GB 160 MB of RAM.

 64 GB to 1 TB 256 MB of RAM.

 1 TB and more 512 MB of RAM.

64-bit ARM architecture (arm64) 2 GB and more 512 MB of RAM.

IBM Power Systems (ppc64le) 2 GB to 4 GB 384 MB of RAM.

 4 GB to 16 GB 512 MB of RAM.

 16 GB to 64 GB 1 GB of RAM.

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

40

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/managing_monitoring_and_updating_the_kernel/index#supported-kdump-targets_supported-kdump-configurations-and-targets
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_basic_system_settings/index#sec-SSH

 64 GB to 128 GB 2 GB of RAM.

 128 GB and more 4 GB of RAM.

IBM Z (s390x) 4 GB to 64 GB 160 MB of RAM.

 64 GB to 1 TB 256 MB of RAM.

 1 TB and more 512 MB of RAM.

Architecture Available Memory Minimum Reserved Memory

On many systems, kdump is able to estimate the amount of required memory and reserve it
automatically. This behavior is enabled by default, but only works on systems that have more than a
certain amount of total available memory , which varies based on the system architecture.

IMPORTANT

The automatic configuration of reserved memory based on the total amount of memory
in the system is a best effort estimation. The actual required memory may vary due to
other factors such as I/O devices. Using not enough of memory might cause that a debug
kernel is not able to boot as a capture kernel in case of a kernel panic. To avoid this
problem, sufficiently increase the crash kernel memory.

Additional resources

For information on how to change memory settings on the command line, see Section 7.3.1,
“Configuring kdump memory usage”.

For instructions on how to set up the amount of reserved memory through the web console, see
Section 7.4.1, “Configuring kdump memory usage and target location in web console” .

For more information about various Red Hat Enterprise Linux technology capabilities and limits,
see the technology capabilities and limits tables .

7.5.2. Minimum threshold for automatic memory reservation

On some systems, it is possible to allocate memory for kdump automatically, either by using the
crashkernel=auto parameter in the boot loader configuration file, or by enabling this option in the
graphical configuration utility. For this automatic reservation to work, however, a certain amount of total
memory needs to be available in the system. The amount differs based on the system’s architecture.

The table below lists the thresholds for automatic memory allocation. If the system has less memory
than specified in the table, the memory needs to be reserved manually.

Table 7.2. Minimum Amount of Memory Required for Automatic Memory Reservation

Architecture Required Memory

AMD64 and Intel 64 (x86_64) 2 GB

CHAPTER 7. INSTALLING AND CONFIGURING KDUMP

41

https://access.redhat.com/articles/rhel-limits

IBM Power Systems (ppc64le) 2 GB

IBM Z (s390x) 4 GB

Architecture Required Memory

Additional resources

For information on how to manually change these settings on the command line, see
Section 7.3.1, “Configuring kdump memory usage” .

For instructions on how to manually change the amount of reserved memory through the web
console, see Section 7.4.1, “Configuring kdump memory usage and target location in web
console”.

7.5.3. Supported kdump targets

When a kernel crash is captured, the vmcore dump file can be either written directly to a device, stored
as a file on a local file system, or sent over a network. The table below contains a complete list of dump
targets that are currently supported or explicitly unsupported by kdump.

Table 7.3. Supported kdump Targets

Type Supported Targets Unsupported Targets

Raw device All locally attached raw disks and
partitions.

Local file system ext2, ext3, ext4, and xfs file
systems on directly attached disk
drives, hardware RAID logical
drives, LVM devices, and mdraid
arrays.

Any local file system not explicitly
listed as supported in this table,
including the auto type
(automatic file system detection).

Remote directory Remote directories accessed
using the NFS or SSH protocol
over IPv4.

Remote directories on the rootfs
file system accessed using the
NFS protocol.

Remote directories accessed
using the iSCSI protocol over
both hardware and software
initiators.

Remote directories accessed
using the iSCSI protocol on
be2iscsi hardware.

Multipath-based storages.

 Remote directories accessed over
IPv6.

 Remote directories accessed
using the SMB or CIFS protocol.

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

42

 Remote directories accessed
using the FCoE (Fibre Channel
over Ethernet) protocol.

 Remote directories accessed
using wireless network interfaces.

Type Supported Targets Unsupported Targets

Additional resources

For information on how to configure the target type on the command line, see Section 7.3.2,
“Configuring the kdump target”.

For information on how to configure the target through the web console, see Section 7.4.1,
“Configuring kdump memory usage and target location in web console”.

7.5.4. Supported kdump filtering levels

To reduce the size of the dump file, kdump uses the makedumpfile core collector to compress the
data and optionally to omit unwanted information. The table below contains a complete list of filtering
levels that are currently supported by the makedumpfile utility.

Table 7.4. Supported Filtering Levels

Option Description

1 Zero pages

2 Cache pages

4 Cache private

8 User pages

16 Free pages

NOTE

The makedumpfile command supports removal of transparent huge pages and hugetlbfs
pages. Consider both these types of hugepages User Pages and remove them using the -
8 level.

Additional resources

For instructions on how to configure the core collector on the command line, see Section 7.3.3,
“Configuring the core collector”.

CHAPTER 7. INSTALLING AND CONFIGURING KDUMP

43

7.5.5. Supported default failure responses

By default, when kdump fails to create a core dump, the operating system reboots. You can, however,
configure kdump to perform a different operation in case it fails to save the core dump to the primary
target. The table below lists all default actions that are currently supported.

Table 7.5. Supported Default Actions

Option Description

dump_to_rootfs Attempt to save the core dump to the root file
system. This option is especially useful in
combination with a network target: if the network
target is unreachable, this option configures kdump
to save the core dump locally. The system is
rebooted afterwards.

reboot Reboot the system, losing the core dump in the
process.

halt Halt the system, losing the core dump in the process.

poweroff Power off the system, losing the core dump in the
process.

shell Run a shell session from within the initramfs, allowing
the user to record the core dump manually.

Additional resources

For detailed information on how to set up the default failure responses on the command line,
see Section 7.3.4, “Configuring the kdump default failure responses” .

7.5.6. Estimating kdump size

When planning and building your kdump environment, it is necessary to know how much space is
required for the dump file before one is produced.

The makedumpfile --mem-usage command provides a useful report about excludable pages, and can
be used to determine which dump level you want to assign. Run this command when the system is under
representative load, otherwise makedumpfile --mem-usage returns a smaller value than is expected in
your production environment.

[root@hostname ~]# makedumpfile --mem-usage /proc/kcore

TYPE PAGES EXCLUDABLE DESCRIPTION
--
ZERO 501635 yes Pages filled with zero
CACHE 51657 yes Cache pages
CACHE_PRIVATE 5442 yes Cache pages + private
USER 16301 yes User process pages
FREE 77738211 yes Free pages
KERN_DATA 1333192 no Dumpable kernel data

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

44

IMPORTANT

The makedumpfile --mem-usage command reports in pages. This means that you have
to calculate the size of memory in use against the kernel page size. By default the
Red Hat Enterprise Linux kernel uses 4 KB sized pages for AMD64 and Intel 64
architectures, and 64 KB sized pages for IBM POWER architectures.

7.6. TESTING THE KDUMP CONFIGURATION

The following procedure describes how to test that the kernel dump process works and is valid before
the machine enters production.

WARNING

The commands below cause the kernel to crash. Use caution when following these
steps, and never carelessly use them on active production system.

Procedure

1. Reboot the system with kdump enabled.

2. Make sure that kdump is running:

~]# systemctl is-active kdump
active

3. Force the Linux kernel to crash:

echo 1 > /proc/sys/kernel/sysrq
echo c > /proc/sysrq-trigger

WARNING

The command above crashes the kernel and a reboot is required.

Once booted again, the address-YYYY-MM-DD-HH:MM:SS/vmcore file is created at the
location you have specified in /etc/kdump.conf (by default to /var/crash/).

NOTE

In addition to confirming the validity of the configuration, it is possible to use this
action to record how long it takes for a crash dump to complete, while a
representative load was running.

CHAPTER 7. INSTALLING AND CONFIGURING KDUMP

45

7.7. ANALYZING A CORE DUMP

To determine the cause of the system crash, you can use the crash utility, which provides an interactive
prompt very similar to the GNU Debugger (GDB). This utility allows you to interactively analyze a core
dump created by kdump, netdump, diskdump or xendump as well as a running Linux system.
Alternatively, you have the option to use the Kdump Helper or Kernel Oops Analyzer .

7.7.1. Installing the crash utility

The following procedure describes how to install the crash analyzing tool.

Procedure

1. Enable the relevant baseos and appstream repositories:

subscription-manager repos --enable baseos repository

subscription-manager repos --enable appstream repository

2. Install the crash package:

yum install crash

3. Install the kernel-debuginfo package:

yum install kernel-debuginfo

The package corresponds to your running kernel and provides the data necessary for the dump
analysis.

Additional resources

For more information about how to work with repositories using the subscription-manager
utility, see Configuring basic system settings .

7.7.2. Running and exiting the crash utility

The following procedure describes how to start the crash utility for analyzing the cause of the system
crash.

Prerequisites

Identify the currently running kernel (for example 4.18.0-5.el8.x86_64).

Procedure

1. To start the crash utility, two necessary parameters need to be passed to the command:

The debug-info (a decompressed vmlinuz image), for example
/usr/lib/debug/lib/modules/4.18.0-5.el8.x86_64/vmlinux provided through a specific
kernel-debuginfo package.

The actual vmcore file, for example /var/crash/127.0.0.1-2018-10-06-14:05:33/vmcore

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

46

https://access.redhat.com/labs/kdumphelper/
https://access.redhat.com/labs/kerneloopsanalyzer/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_basic_system_settings/index#sec-Installation-Basic-Tasks

The resulting crash command then looks like this:

crash /usr/lib/debug/lib/modules/4.18.0-5.el8.x86_64/vmlinux /var/crash/127.0.0.1-
2018-10-06-14:05:33/vmcore

Use the same <kernel> version that was captured by kdump.

Example 7.1. Running the crash utility

The following example shows analyzing a core dump created on October 6 2018 at 14:05
PM, using the 4.18.0-5.el8.x86_64 kernel.

...
WARNING: kernel relocated [202MB]: patching 90160 gdb minimal_symbol values

 KERNEL: /usr/lib/debug/lib/modules/4.18.0-5.el8.x86_64/vmlinux
 DUMPFILE: /var/crash/127.0.0.1-2018-10-06-14:05:33/vmcore [PARTIAL DUMP]
 CPUS: 2
 DATE: Sat Oct 6 14:05:16 2018
 UPTIME: 01:03:57
LOAD AVERAGE: 0.00, 0.00, 0.00
 TASKS: 586
 NODENAME: localhost.localdomain
 RELEASE: 4.18.0-5.el8.x86_64
 VERSION: #1 SMP Wed Aug 29 11:51:55 UTC 2018
 MACHINE: x86_64 (2904 Mhz)
 MEMORY: 2.9 GB
 PANIC: "sysrq: SysRq : Trigger a crash"
 PID: 10635
 COMMAND: "bash"
 TASK: ffff8d6c84271800 [THREAD_INFO: ffff8d6c84271800]
 CPU: 1
 STATE: TASK_RUNNING (SYSRQ)

crash>

2. To exit the interactive prompt and terminate crash, type exit or q.

Example 7.2. Exiting the crash utility

crash> exit
~]#

NOTE

The crash command can also be used as a powerful tool for debugging a live system.
However use it with caution so as not to break your system.

7.7.3. Displaying message buffer, backtrace, and other indicators in the crash utility

The following procedures describe how to use the crash utility and display various indicators, such as a
kernel message buffer, a backtrace, a process status, virtual memory information and open files.

CHAPTER 7. INSTALLING AND CONFIGURING KDUMP

47

Displaying the message buffer

To display the kernel message buffer, type the log command at the interactive prompt as
displayed in the example below:

Example 7.3. Displaying the kernel message buffer

crash> log
... several lines omitted ...
EIP: 0060:[<c068124f>] EFLAGS: 00010096 CPU: 2
EIP is at sysrq_handle_crash+0xf/0x20
EAX: 00000063 EBX: 00000063 ECX: c09e1c8c EDX: 00000000
ESI: c0a09ca0 EDI: 00000286 EBP: 00000000 ESP: ef4dbf24
 DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068
Process bash (pid: 5591, ti=ef4da000 task=f196d560 task.ti=ef4da000)
Stack:
 c068146b c0960891 c0968653 00000003 00000000 00000002 efade5c0 c06814d0
<0> fffffffb c068150f b7776000 f2600c40 c0569ec4 ef4dbf9c 00000002 b7776000
<0> efade5c0 00000002 b7776000 c0569e60 c051de50 ef4dbf9c f196d560 ef4dbfb4
Call Trace:
 [<c068146b>] ? __handle_sysrq+0xfb/0x160
 [<c06814d0>] ? write_sysrq_trigger+0x0/0x50
 [<c068150f>] ? write_sysrq_trigger+0x3f/0x50
 [<c0569ec4>] ? proc_reg_write+0x64/0xa0
 [<c0569e60>] ? proc_reg_write+0x0/0xa0
 [<c051de50>] ? vfs_write+0xa0/0x190
 [<c051e8d1>] ? sys_write+0x41/0x70
 [<c0409adc>] ? syscall_call+0x7/0xb
Code: a0 c0 01 0f b6 41 03 19 d2 f7 d2 83 e2 03 83 e0 cf c1 e2 04 09 d0 88 41 03 f3 c3 90
c7 05 c8 1b 9e c0 01 00 00 00 0f ae f8 89 f6 <c6> 05 00 00 00 00 01 c3 89 f6 8d bc 27 00
00 00 00 8d 50 d0 83
EIP: [<c068124f>] sysrq_handle_crash+0xf/0x20 SS:ESP 0068:ef4dbf24
CR2: 0000000000000000

Type help log for more information on the command usage.

NOTE

The kernel message buffer includes the most essential information about the
system crash and, as such, it is always dumped first in to the vmcore-dmesg.txt
file. This is useful when an attempt to get the full vmcore file failed, for example
because of lack of space on the target location. By default, vmcore-dmesg.txt is
located in the /var/crash/ directory.

7.7.3.1. Displaying a backtrace

To display the kernel stack trace, use the bt command.

Example 7.4. Displaying the kernel stack trace

crash> bt
PID: 5591 TASK: f196d560 CPU: 2 COMMAND: "bash"
 #0 [ef4dbdcc] crash_kexec at c0494922
 #1 [ef4dbe20] oops_end at c080e402
 #2 [ef4dbe34] no_context at c043089d

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

48

 #3 [ef4dbe58] bad_area at c0430b26
 #4 [ef4dbe6c] do_page_fault at c080fb9b
 #5 [ef4dbee4] error_code (via page_fault) at c080d809
 EAX: 00000063 EBX: 00000063 ECX: c09e1c8c EDX: 00000000 EBP: 00000000
 DS: 007b ESI: c0a09ca0 ES: 007b EDI: 00000286 GS: 00e0
 CS: 0060 EIP: c068124f ERR: ffffffff EFLAGS: 00010096
 #6 [ef4dbf18] sysrq_handle_crash at c068124f
 #7 [ef4dbf24] __handle_sysrq at c0681469
 #8 [ef4dbf48] write_sysrq_trigger at c068150a
 #9 [ef4dbf54] proc_reg_write at c0569ec2
#10 [ef4dbf74] vfs_write at c051de4e
#11 [ef4dbf94] sys_write at c051e8cc
#12 [ef4dbfb0] system_call at c0409ad5
 EAX: ffffffda EBX: 00000001 ECX: b7776000 EDX: 00000002
 DS: 007b ESI: 00000002 ES: 007b EDI: b7776000
 SS: 007b ESP: bfcb2088 EBP: bfcb20b4 GS: 0033
 CS: 0073 EIP: 00edc416 ERR: 00000004 EFLAGS: 00000246

Type bt <pid> to display the backtrace of a specific process or type help bt for more
information on bt usage.

7.7.3.2. Displaying a process status

To display the status of processes in the system, use the ps command.

Example 7.5. Displaying the status of processes in the system

crash> ps
 PID PPID CPU TASK ST %MEM VSZ RSS COMM
> 0 0 0 c09dc560 RU 0.0 0 0 [swapper]
> 0 0 1 f7072030 RU 0.0 0 0 [swapper]
 0 0 2 f70a3a90 RU 0.0 0 0 [swapper]
> 0 0 3 f70ac560 RU 0.0 0 0 [swapper]
 1 0 1 f705ba90 IN 0.0 2828 1424 init
... several lines omitted ...
 5566 1 1 f2592560 IN 0.0 12876 784 auditd
 5567 1 2 ef427560 IN 0.0 12876 784 auditd
 5587 5132 0 f196d030 IN 0.0 11064 3184 sshd
> 5591 5587 2 f196d560 RU 0.0 5084 1648 bash

Use ps <pid> to display the status of a single specific process. Use help ps for more information
on ps usage.

7.7.3.3. Displaying virtual memory information

To display basic virtual memory information, type the vm command at the interactive prompt.

Example 7.6. Displaying virtual memory information of the current context

crash> vm
PID: 5591 TASK: f196d560 CPU: 2 COMMAND: "bash"
 MM PGD RSS TOTAL_VM
f19b5900 ef9c6000 1648k 5084k

CHAPTER 7. INSTALLING AND CONFIGURING KDUMP

49

 VMA START END FLAGS FILE
f1bb0310 242000 260000 8000875 /lib/ld-2.12.so
f26af0b8 260000 261000 8100871 /lib/ld-2.12.so
efbc275c 261000 262000 8100873 /lib/ld-2.12.so
efbc2a18 268000 3ed000 8000075 /lib/libc-2.12.so
efbc23d8 3ed000 3ee000 8000070 /lib/libc-2.12.so
efbc2888 3ee000 3f0000 8100071 /lib/libc-2.12.so
efbc2cd4 3f0000 3f1000 8100073 /lib/libc-2.12.so
efbc243c 3f1000 3f4000 100073
efbc28ec 3f6000 3f9000 8000075 /lib/libdl-2.12.so
efbc2568 3f9000 3fa000 8100071 /lib/libdl-2.12.so
efbc2f2c 3fa000 3fb000 8100073 /lib/libdl-2.12.so
f26af888 7e6000 7fc000 8000075 /lib/libtinfo.so.5.7
f26aff2c 7fc000 7ff000 8100073 /lib/libtinfo.so.5.7
efbc211c d83000 d8f000 8000075 /lib/libnss_files-2.12.so
efbc2504 d8f000 d90000 8100071 /lib/libnss_files-2.12.so
efbc2950 d90000 d91000 8100073 /lib/libnss_files-2.12.so
f26afe00 edc000 edd000 4040075
f1bb0a18 8047000 8118000 8001875 /bin/bash
f1bb01e4 8118000 811d000 8101873 /bin/bash
f1bb0c70 811d000 8122000 100073
f26afae0 9fd9000 9ffa000 100073
... several lines omitted ...

Use vm <pid> to display information on a single specific process, or use help vm for more
information on vm usage.

7.7.3.4. Displaying open files

To display information about open files, use the files command.

Example 7.7. Displaying information about open files of the current context

crash> files
PID: 5591 TASK: f196d560 CPU: 2 COMMAND: "bash"
ROOT: / CWD: /root
 FD FILE DENTRY INODE TYPE PATH
 0 f734f640 eedc2c6c eecd6048 CHR /pts/0
 1 efade5c0 eee14090 f00431d4 REG /proc/sysrq-trigger
 2 f734f640 eedc2c6c eecd6048 CHR /pts/0
 10 f734f640 eedc2c6c eecd6048 CHR /pts/0
255 f734f640 eedc2c6c eecd6048 CHR /pts/0

Use files <pid> to display files opened by only one selected process, or use help files for more
information on files usage.

7.7.4. Using Kernel Oops Analyzer

The Kernel Oops Analyzer is a tool that analyzes the crash dump by comparing the oops messages with
known issues in the knowledge base.

Prerequisites

Secure an oops message to feed the Kernel Oops Analyzer by following instructions in Red Hat

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

50

Secure an oops message to feed the Kernel Oops Analyzer by following instructions in Red Hat
Labs.

Procedure

1. Follow the Kernel Oops Analyzer link to access the tool.

2. Browse for the oops message by hitting the Browse button.

3. Click the DETECT button to compare the oops message based on information from
makedumpfile against known solutions.

Additional resources

kdump.conf(5) — a manual page for the /etc/kdump.conf configuration file containing the full
documentation of available options.

zipl.conf(5) — a manual page for the /etc/zipl.conf configuration file.

zipl(8) — a manual page for the zipl boot loader utility for IBM System z.

makedumpfile(8) — a manual page for the makedumpfile core collector.

kexec(8) — a manual page for kexec.

crash(8) — a manual page for the crash utility.

/usr/share/doc/kexec-tools/kexec-kdump-howto.txt — an overview of the kdump and kexec
installation and usage.

For more information about the kexec and kdump configuration see the Red Hat
Knowledgebase article.

For more information about the supported kdump targets see the Red Hat Knowledgebase
article.

CHAPTER 7. INSTALLING AND CONFIGURING KDUMP

51

https://access.redhat.com/labs/kerneloopsanalyzer/#instruction
https://access.redhat.com/labs/kerneloopsanalyzer/
https://access.redhat.com/site/solutions/6038
https://access.redhat.com/site/solutions/223773

CHAPTER 8. APPLYING PATCHES WITH KERNEL LIVE
PATCHING

You can use the Red Hat Enterprise Linux kernel live patching solution to patch a running kernel without
rebooting or restarting any processes.

With this solution, system administrators:

Can immediately apply critical security patches to the kernel.

Do not have to wait for long-running tasks to complete, for users to log off, or for scheduled
downtime.

Control the system’s uptime more and do not sacrifice security or stability.

Note that not every critical or important CVE will be resolved using the kernel live patching solution. Our
goal is to reduce the required reboots for security-related patches, not to eliminate them entirely. For
more details about the scope of live patching, see the Customer Portal Solutions article .

WARNING

Some incompatibilities exist between kernel live patching and other kernel
subcomponents. Read the Section 8.1, “Limitations of kpatch” carefully before using
kernel live patching.

8.1. LIMITATIONS OF KPATCH

The kpatch feature is not a general-purpose kernel upgrade mechanism. It is used for applying
simple security and bug fix updates when rebooting the system is not immediately possible.

Do not use the SystemTap or kprobe tools during or after loading a patch. The patch could fail
to take effect until after such probes have been removed.

8.2. SUPPORT FOR THIRD-PARTY LIVE PATCHING

The kpatch utility is the only kernel live patching utility supported by Red Hat with the RPM modules
provided by Red Hat repositories. Red Hat will not support any live patches which were not provided by
Red Hat itself.

If you require support for an issue that arises with a third-party live patch, Red Hat recommends that you
open a case with the live patching vendor at the outset of any investigation in which a root cause
determination is necessary. This allows the source code to be supplied if the vendor allows, and for their
support organization to provide assistance in root cause determination prior to escalating the
investigation to Red Hat Support.

For any system running with third-party live patches, Red Hat reserves the right to ask for reproduction
with Red Hat shipped and supported software. In the event that this is not possible, we require a similar
system and workload be deployed on your test environment without live patches applied, to confirm if
the same behavior is observed.

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

52

https://access.redhat.com/solutions/4351231

For more information about third-party software support policies, see How does Red Hat Global
Support Services handle third-party software, drivers, and/or uncertified hardware/hypervisors or guest
operating systems?

8.3. ACCESS TO KERNEL LIVE PATCHES

Kernel live patching capability is implemented as a kernel module (kmod) that is delivered as an RPM
package.

All customers have access to kernel live patches, which are delivered through the usual channels.
However, customers who do not subscribe to an extended support offering will lose access to new
patches for the current minor release once the next minor release becomes available. For example,
customers with standard subscriptions will only be able to live patch RHEL 8.2 kernel until the RHEL 8.3
kernel is released.

8.4. COMPONENTS OF KERNEL LIVE PATCHING

The components of kernel live patching are as follows:

Kernel patch module

The delivery mechanism for kernel live patches.

A kernel module which is built specifically for the kernel being patched.

The patch module contains the code of the desired fixes for the kernel.

The patch modules register with the livepatch kernel subsystem and provide information
about original functions to be replaced, with corresponding pointers to the replacement
functions. Kernel patch modules are delivered as RPMs.

The naming convention is kpatch_<kernel version>_<kpatch version>_<kpatch release>.
The "kernel version" part of the name has dots and dashes replaced with underscores.

The kpatch utility

A command-line utility for managing patch modules.

The kpatch service

A systemd service required by multiuser.target. This target loads the kernel patch module at boot
time.

8.5. HOW KERNEL LIVE PATCHING WORKS

The kpatch kernel patching solution uses the livepatch kernel subsystem to redirect old functions to
new ones. When a live kernel patch is applied to a system, the following things happen:

1. The kernel patch module is copied to the /var/lib/kpatch/ directory and registered for re-
application to the kernel by systemd on next boot.

2. The kpatch module is loaded into the running kernel and the new functions are registered to the
ftrace mechanism with a pointer to the location in memory of the new code.

3. When the kernel accesses the patched function, it is redirected by the ftrace mechanism which
bypasses the original functions and redirects the kernel to patched version of the function.

Figure 8.1. How kernel live patching works

CHAPTER 8. APPLYING PATCHES WITH KERNEL LIVE PATCHING

53

https://access.redhat.com/articles/1067

Figure 8.1. How kernel live patching works

8.6. ENABLING KERNEL LIVE PATCHING

A kernel patch module is delivered in an RPM package, specific to the version of the kernel being
patched. Each RPM package will be cumulatively updated over time.

The following sections describe how to ensure you receive all future cumulative live patching updates for
a given kernel.

WARNING

Red Hat does not support any third party live patches applied to a Red Hat
supported system.

8.6.1. Subscribing to the live patching stream

This procedure describes installing a particular live patching package. By doing so, you subscribe to the
live patching stream for a given kernel and ensure that you receive all future cumulative live patching
updates for that kernel.

WARNING

Because live patches are cumulative, you cannot select which individual patches are
deployed for a given kernel.

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

54

Prerequisites

Root permissions

Procedure

1. Optionally, check your kernel version:

uname -r
4.18.0-94.el8.x86_64

2. Search for a live patching package that corresponds to the version of your kernel:

yum search $(uname -r)

3. Install the live patching package:

yum install "kpatch-patch = $(uname -r)"

The command above installs and applies the latest cumulative live patches for that specific
kernel only.

The live patching package contains a patch module, if the package’s version is 1-1 or higher. In
that case the kernel will be automatically patched during the installation of the live patching
package.

The kernel patch module is also installed into the /var/lib/kpatch/ directory to be loaded by the
systemd system and service manager during the future reboots.

NOTE

If there are not yet any live patches available for the given kernel, an empty live
patching package will be installed. An empty live patching package will have a
kpatch_version-kpatch_release of 0-0, for example kpatch-patch-4_18_0-94-0-
0.el8.x86_64.rpm. The installation of the empty RPM subscribes the system to all
future live patches for the given kernel.

4. Optionally, verify that the kernel is patched:

kpatch list
Loaded patch modules:
kpatch_4_18_0_94_1_1 [enabled]

Installed patch modules:
kpatch_4_18_0_94_1_1 (4.18.0-94.el8.x86_64)
…

The output shows that the kernel patch module has been loaded into the kernel, which is now
patched with the latest fixes from the kpatch-patch-4_18_0-94-1-1.el8.x86_64.rpm package.

5. Re-enable the live patching for the new kernel:

yum install kpatch-patch-<new_kernel_version>

CHAPTER 8. APPLYING PATCHES WITH KERNEL LIVE PATCHING

55

Later, if you install a new kernel and reboot into it, you will have to re-enable the live patching
for that new kernel.

Additional resources

For more information about the kpatch command-line utility, see the kpatch(1) manual page.

Refer to the relevant sections of the Configuring basic system settings for further information
about software packages Red Hat Enterprise Linux 8.

8.7. UPDATING KERNEL PATCH MODULES

Since kernel patch modules are delivered and applied through RPM packages, updating a cumulative
kernel patch module is like updating any other RPM package.

Prerequisites

Root permissions

The system is subscribed to the live patching stream, as described in Section 8.6.1, “Subscribing
to the live patching stream”.

Procedure

Update to a new cumulative version for the current kernel:

yum update "kpatch-patch = $(uname -r)"

The command above automatically installs and applies any updates that are available for the
currently running kernel. Including any future released cumulative live patches.

Alternatively, update all installed kernel patch modules:

yum update "kpatch-patch*"

NOTE

When the system reboots into the same kernel, the kernel is automatically live patched
again by the kpatch.service systemd service.

Additional resources

For further information about updating software packages, see the relevant sections of
Configuring basic system settings in Red Hat Enterprise Linux 8.

8.8. DISABLING KERNEL LIVE PATCHING

In case system administrators encountered some unanticipated negative effects connected with the
Red Hat Enterprise Linux kernel live patching solution they have a choice to disable the mechanism. The
following sections describe the ways how to disable the live patching solution.

IMPORTANT

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

56

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_basic_system_settings/index?lb_target=preview#installing-software-with-yum_configuring-basic-system-settings
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_basic_system_settings/index?lb_target=preview#using-yum-for-particular-tasks_installing-software-with-yum

IMPORTANT

Currently, Red Hat does not support reverting live patches without rebooting your
system. In case of any issues, contact our support team.

8.8.1. Removing the live patching package

The following procedure describes how to disable the Red Hat Enterprise Linux kernel live patching
solution by removing the live patching package.

Prerequisites

Root permissions

The live patching package is installed.

Procedure

1. Select the live patching package:

yum list installed | grep kpatch-patch
kpatch-patch-4_18_0-94.x86_64 1-1.el8 @@commandline
…

The example output above lists live patching packages that you installed.

2. Remove the live patching package:

yum remove kpatch-patch-4_18_0-94.x86_64

When a live patching package is removed, the kernel remains patched until the next reboot, but
the kernel patch module is removed from disk. After the next reboot, the corresponding kernel
will no longer be patched.

3. Reboot your system.

4. Verify that the live patching package was been removed:

yum list installed | grep kpatch-patch

The command displays no output if the package has been successfully removed.

5. Optionally, verify that the kernel live patching solution is disabled:

kpatch list
Loaded patch modules:

The example output shows that the kernel is not patched and the live patching solution is not
active because there are no patch modules that are currently loaded.

Additional resources

For more information about the kpatch command-line utility, see the kpatch(1) manual page.

For further information about working with software packages, see the relevant sections of

CHAPTER 8. APPLYING PATCHES WITH KERNEL LIVE PATCHING

57

For further information about working with software packages, see the relevant sections of
Configuring basic system settings .

8.8.2. Uninstalling the kernel patch module

The following procedure describes how to prevent the Red Hat Enterprise Linux kernel live patching
solution from applying a kernel patch module on subsequent boots.

Prerequisites

Root permissions

A live patching package is installed.

A kernel patch module is installed and loaded.

Procedure

1. Select a kernel patch module:

kpatch list
Loaded patch modules:
kpatch_4_18_0_94_1_1 [enabled]

Installed patch modules:
kpatch_4_18_0_94_1_1 (4.18.0-94.el8.x86_64)
…

2. Uninstall the selected kernel patch module:

kpatch uninstall kpatch_4_18_0_94_1_1
uninstalling kpatch_4_18_0_94_1_1 (4.18.0-94.el8.x86_64)

Note that the uninstalled kernel patch module is still loaded:

kpatch list
Loaded patch modules:
kpatch_4_18_0_94_1_1 [enabled]

Installed patch modules:
<NO_RESULT>

When the selected module is uninstalled, the kernel remains patched until the next reboot,
but the kernel patch module is removed from disk.

3. Reboot your system.

4. Optionally, verify that the kernel patch module has been uninstalled:

kpatch list
Loaded patch modules:
…

The example output above shows no loaded or installed kernel patch modules, therefore the

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

58

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_basic_system_settings/index?lb_target=preview#installing-software-with-yum_configuring-basic-system-settings

The example output above shows no loaded or installed kernel patch modules, therefore the
kernel is not patched and the kernel live patching solution is not active.

Additional resources

For more information about the kpatch command-line utility, refer to the kpatch(1) manual
page.

8.8.3. Disabling kpatch.service

The following procedure describes how to prevent the Red Hat Enterprise Linux kernel live patching
solution from applying all kernel patch modules globally on subsequent boots.

Prerequisites

Root permissions

A live patching package is installed.

A kernel patch module is installed and loaded.

Procedure

1. Verify kpatch.service is enabled:

systemctl is-enabled kpatch.service
enabled

2. Disable kpatch.service:

systemctl disable kpatch.service
Removed /etc/systemd/system/multi-user.target.wants/kpatch.service.

Note that the applied kernel patch module is still loaded:

kpatch list
Loaded patch modules:
kpatch_4_18_0_94_1_1 [enabled]

Installed patch modules:
kpatch_4_18_0_94_1_1 (4.18.0-94.el8.x86_64)

3. Reboot your system.

4. Optionally, verify the status of kpatch.service:

systemctl status kpatch.service
● kpatch.service - "Apply kpatch kernel patches"
 Loaded: loaded (/usr/lib/systemd/system/kpatch.service; disabled; vendor preset: disabled)
 Active: inactive (dead)

The example output testifies that kpatch.service has been disabled and is not running.
Thereby, the kernel live patching solution is not active.

CHAPTER 8. APPLYING PATCHES WITH KERNEL LIVE PATCHING

59

5. Verify that the kernel patch module has been unloaded:

kpatch list
Loaded patch modules:
<NO_RESULT>

Installed patch modules:
kpatch_4_18_0_94_1_1 (4.18.0-94.el8.x86_64)

The example output above shows that a kernel patch module is still installed but the kernel is
not patched.

Additional resources

For more information about the kpatch command-line utility, see the kpatch(1) manual page.

For more information about the systemd system and service manager, unit configuration files,
their locations, as well as a complete list of systemd unit types, see the relevant sections in
Configuring basic system settings .

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

60

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_basic_system_settings/index#managing-services-with-systemd_configuring-basic-system-settings

CHAPTER 9. SETTING LIMITS FOR APPLICATIONS
As a system administrator, use the control groups kernel functionality to set limits, prioritize or isolate
the hardware resources of processes so that applications on your system are stable and do not run out
of memory.

9.1. WHAT ARE CONTROL GROUPS

Control groups is a Linux kernel feature that enables you to organize processes into hierarchically
ordered groups - cgroups. The hierarchy (control groups tree) is defined by providing structure to
cgroups virtual file system, mounted by default on the /sys/fs/cgroup/ directory. It is done manually by
creating and removing sub-directories in /sys/fs/cgroup/. Alternatively, by using the systemd system
and service manager.

The resource controllers (a kernel component) then modify the behavior of processes in cgroups by
limiting, prioritizing or allocating system resources, (such as CPU time, memory, network bandwidth, or
various combinations) of those processes.

The added value of cgroups is process aggregation which enables division of hardware resources
among applications and users. Thereby an increase in overall efficiency, stability and security of users'
environment can be achieved.

9.1.1. Control groups version 1

Control groups version 1 (cgroups-v1) provide a per-resource controller hierarchy. It means that each
resource, such as CPU, memory, I/O, and so on, has its own control group hierarchy. It is possible to
combine different control group hierarchies in a way that one controller can coordinate with another one
in managing their respective resources. However, the two controllers may belong to different process
hierarchies, which does not permit their proper coordination.

The cgroups-v1 controllers were developed across a large time span and as a result, the behavior and
naming of their control files is not uniform.

This sub-section was based on a Devconf.cz 2019 presentation.[1]

9.1.2. Control groups version 2

The problems with controller coordination, which stemmed from hierarchy flexibility, led to the
development of control groups version 2 .

Control groups version 2 (cgroups-v2) provides a single control group hierarchy against which all
resource controllers are mounted.

The control file behavior and naming is consistent among different controllers.

This sub-section was based on a Devconf.cz 2019 presentation.[2]

CHAPTER 9. SETTING LIMITS FOR APPLICATIONS

61

WARNING

Red Hat Enterprise Linux 8 provides cgroups-v2 as a technology preview with a
limited number of resource controllers. For more information about the relevant
resource controllers, see cgroups-v2 release note .

Additional resources

For more information about resource controllers, see What are kernel resource controllers
section and cgroups(7) manual pages.

For more information about cgroups hierarchies and cgroups versions, refer to cgroups(7)
manual pages.

9.2. WHAT ARE KERNEL RESOURCE CONTROLLERS

This section explains the concept of resource controllers in the Linux kernel and also lists supported
controllers for control groups version 1 (cgroups-v1) and control groups version 2 (cgroups-v2) in
Red Hat Enterprise Linux 8.

A resource controller, also called a cgroup subsystem, represents a single resource, such as CPU time,
memory, network bandwidth or disk I/O. The Linux kernel provides a range of resource controllers that
are mounted automatically by the systemd system and service manager. Find a list of currently
mounted resource controllers in the /proc/cgroups entry.

The following controllers are available for cgroups-v1:

blkio - sets limits on input/output access to and from block devices.

cpu - uses the CPU scheduler to provide the control group tasks with an access to the CPU. It is
mounted together with the cpuacct controller on the same mount.

cpuacct - creates automatic reports on CPU resources used by tasks in a control group. It is
mounted together with the cpu controller on the same mount.

cpuset - assigns individual CPUs on a multicore system and memory nodes to tasks in a control
group.

devices - grants or denies access to devices for tasks in a control group.

freezer - suspends or resumes tasks in a control group.

memory - sets limits on memory use by tasks in a control group and generates automatic
reports on memory resources used by those tasks.

net_cls - tags network packets with a class identifier (classid) that enables the Linux traffic
controller (the tc command) to identify packets originating from a particular control group task.
A subsystem of net_cls, the net_filter (iptables), can also use this tag to perform actions on
such packets. The net_filter tags network sockets with a firewall identifier (fwid) that allows the
Linux firewall (the iptables command) to identify packets originating from a particular control
group task.

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

62

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/8.0_release_notes/technology_previews#BZ-1401552

net_prio - sets the priority of network traffic.

pids - sets limits on number of processes and their children in a control group.

perf_event - enables monitoring cgroups with the perf tool.

rdma - sets limits on Remote Direct Memory Access/InfiniBand specific resources in a control
group.

hugetlb - enables to use virtual memory pages of large sizes and to enforce resource limits on
these pages.

The following controllers are available for cgroups-v2:

io - follow-up to blkio of cgroups-v1

memory - follow-up to memory of cgroups-v1

pids - same as pids in cgroups-v1

rdma - same as rdma in cgroups-v1

cpu - follow-up to cpu and cpuacct of cgroups-v1

IMPORTANT

A given resource controller can be employed either in a cgroups-v1 hierarchy or a
cgroups-v2 hierarchy, not simultaneously in both.

Additional resources

For more information about resource controllers in general, refer to the cgroups(7) manual
page.

For detailed descriptions of specific resource controllers, see the documentation in the
/usr/share/doc/kernel-doc-<kernel_version>/Documentation/cgroups-v1/ directory.

For more information about cgroups-v2, refer to the cgroups(7) manual page.

9.3. WHAT ARE NAMESPACES

This section explains the concept of namespaces, their connection to control groups and resource
management.

Namespaces are a kernel feature that enables a virtual view of isolated system resources through the
/proc/self/ns/cgroup interface. By isolating a process from system resources, you can specify and
control what a process is able to interact with.

The purpose is to prevent leakage of privileged data from the global namespaces to cgroup and to
enable other features, such as container migration.

The following namespaces are supported:

Mount

The mount namespace isolates file system mount points, enabling each process to have a

CHAPTER 9. SETTING LIMITS FOR APPLICATIONS

63

The mount namespace isolates file system mount points, enabling each process to have a
distinct filesystem space within wich to operate.

UTS

Hostname and NIS domain name

IPC

System V IPC, POSIX message queues

PID

Process IDs

Network

Network devices, stacks, ports, etc.

User

User and group IDs

Control groups

Isolates cgroups

Additional resources

For more information about namespaces, see the namespaces(7) and cgroup_namespaces(7)
manual pages.

For more information about cgroups, see What are control groups .

9.4. USING CONTROL GROUPS THROUGH A VIRTUAL FILE SYSTEM

The following sections provide an overview of tasks related to creation, modification and removal of
control groups (cgroups) using the /sys/fs/ virtual file system.

9.4.1. Setting memory limits to applications through cgroups-v1

This procedure describes how to use the /sys/fs/ virtual file system to configure a memory limit to an
application through control groups version 1 (cgroups-v1).

Prerequisites

Application to restrict

Root permissions

Control groups basic concept

Procedure

1. Create a sub-directory in the memory resource controller directory:

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

64

mkdir /sys/fs/cgroup/memory/example/

The directory above represents a control group, where you can place specific processes and
apply certain memory limits to the processes.

2. Optionally, investigate the newly created control group:

ll /sys/fs/cgroup/memory/example/
-rw-r— r--. 1 root root 0 Apr 25 16:34 cgroup.clone_children
--w— w— w-. 1 root root 0 Apr 25 16:34 cgroup.event_control
-rw-r— r--. 1 root root 0 Apr 25 16:42 cgroup.procs
…

The example output shows files that the example control group inherited from its parent
resource controller. By default, the newly created control group inherited access to the system’s
entire memory without a limit.

3. Configure a memory limit of the control group:

echo 700000 > /sys/fs/cgroup/memory/example/memory.limit_in_bytes

The example command sets the memory limit to 700 Kilobytes.

4. Verify the limit:

cat /sys/fs/cgroup/memory/example/memory.limit_in_bytes
696320

The example output displays the memory limit value as a multiple of 4096 bytes - one kernel
page size.

5. Add the application’s PID to the control group:

echo 23453 > /sys/fs/cgroup/memory/example/cgroup.procs

The example command ensures that a desired application does not exceed a memory limit
configured in the control group. Your PID should come from an existing process in the system,
PID 23453 here is fictional.

6. Verify that the application runs in the specified control group:

ps -o cgroup 23453
CGROUP
11:memory:/example,5:devices:/system.slice/example.service,4:pids:/system.slice/example.servi
ce,1:name=systemd:/system.slice/example.service

The example output above shows that the process of the desired application runs in the
example control group, which applies a memory limit to the application’s process.

Additional resources

For more information about resource controllers, see the What are kernel resource controllers
section and the cgroups(7) manual page.

CHAPTER 9. SETTING LIMITS FOR APPLICATIONS

65

For more information about /sys/fs/, see the sysfs(5) manual page.

[1] Linux Control Group v2 - An Introduction, Devconf.cz 2019 presentation by Waiman Long

[2] Linux Control Group v2 - An Introduction, Devconf.cz 2019 presentation by Waiman Long

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

66

CHAPTER 10. ANALYZING SYSTEM PERFORMANCE WITH BPF
COMPILER COLLECTION

As a system administrator, use the BPF Compiler Collection (BCC) library to create tools for analyzing
the performance of your Linux operating system and gathering information, which could be difficult to
obtain through other interfaces.

IMPORTANT

The BCC library is a Technology Preview in Red Hat Enterprise Linux 8. See Technology
Preview Features Support Scope for more details.

10.1. BCC

BPF Compiler Collection (BCC) is a library, which facilitates the creation of the extended Berkeley
Packet Filter (eBPF) programs. Their main utility is analyzing OS performance and network performance
without experiencing overhead or security issues.

BCC removes the need for users to know deep technical details of eBPF, and provides many out-of-
the-box starting points, such as the bcc-tools package with pre-created eBPF programs.

NOTE

The eBPF programs are triggered on events, such as disk I/O, TCP connections, and
process creations. It is unlikely that the programs should cause the kernel to crash, loop or
become unresponsive because they run in a safe virtual machine in the kernel.

Additional resources

For more information about BCC, see the /usr/share/doc/bcc/README.md file.

10.2. INSTALLING BCC

This section describes how to install the bcc-tools package, which contains the BPF Compiler Collection
(BCC) library.

Prerequisites

An active Red Hat Enterprise Linux subscription

An enabled repository containing the bcc-tools package

Introduction to yum package manager

Updated kernel

Procedure

1. Install bcc-tools:

yum install bcc-tools

Once installed, the tools are placed in the /usr/share/bcc/tools/ directory.

CHAPTER 10. ANALYZING SYSTEM PERFORMANCE WITH BPF COMPILER COLLECTION

67

https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_basic_system_settings/index#basics-registering-managing-subscriptions
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_basic_system_settings/index#basics-installing-software
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_basic_system_settings/index#installing-software-with-yum

2. Optionally, inspect the tools:

ll /usr/share/bcc/tools/
...
-rwxr-xr-x. 1 root root 4198 Dec 14 17:53 dcsnoop
-rwxr-xr-x. 1 root root 3931 Dec 14 17:53 dcstat
-rwxr-xr-x. 1 root root 20040 Dec 14 17:53 deadlock_detector
-rw-r--r--. 1 root root 7105 Dec 14 17:53 deadlock_detector.c
drwxr-xr-x. 3 root root 8192 Mar 11 10:28 doc
-rwxr-xr-x. 1 root root 7588 Dec 14 17:53 execsnoop
-rwxr-xr-x. 1 root root 6373 Dec 14 17:53 ext4dist
-rwxr-xr-x. 1 root root 10401 Dec 14 17:53 ext4slower
...

The doc directory in the listing above contains documentation for each tool.

10.3. USING SELECTED BCC-TOOLS FOR PERFORMANCE ANALYSES

This section describes how to use certain pre-created programs from the BPF Compiler Collection
(BCC) library to efficiently and securely analyze the system performance on the per-event basis. The
set of pre-created programs in the BCC library can serve as examples for creation of additional
programs.

Prerequisites

Introduction to BCC

Installed BCC library

Root permissions

Using execsnoop to examine the system processes

1. Execute the execsnoop program in one terminal:

/usr/share/bcc/tools/execsnoop

2. In another terminal execute for example:

$ ls /usr/share/bcc/tools/doc/

The above creates a short-lived process of the ls command.

3. The terminal running execsnoop shows the output similar to the following:

PCOMM PID PPID RET ARGS
ls 8382 8287 0 /usr/bin/ls --color=auto /usr/share/bcc/tools/doc/
sed 8385 8383 0 /usr/bin/sed s/^ *[0-9]\+ *//
...

The execsnoop program prints a line of output for each new process, which consumes system
resources. It even detects processes of programs that run very shortly, such as ls, and most
monitoring tools would not register them.

The result above shows a parent process name (ls), its process ID (5076), parent process ID

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

68

(2931), the return value of the exec() system call (0), which loads program code into new
processes. Finally, the output displays a location of the started program with arguments
(/usr/bin/ls --color=auto /usr/share/bcc/tools/doc/).

To see more details, examples, and options for execsnoop, refer to the
/usr/share/bcc/tools/doc/execsnoop_example.txt file.

For more information about exec(), see exec(3) manual pages.

Using opensnoop to track what files a command opens

1. Execute the opensnoop program in one terminal:

/usr/share/bcc/tools/opensnoop -n uname

The above prints output for files, which are opened only by the process of the uname command.

2. In another terminal execute:

 $ uname

The command above opens certain files, which are captured in the next step.

3. The terminal running opensnoop shows the output similar to the following:

PID COMM FD ERR PATH
8596 uname 3 0 /etc/ld.so.cache
8596 uname 3 0 /lib64/libc.so.6
8596 uname 3 0 /usr/lib/locale/locale-archive
...

The opensnoop program watches the open() system call across the whole system, and prints a
line of output for each file that uname tried to open along the way.

The result above shows a process ID (PID), a process name (COMM), and a file descriptor (FD)
- a value that open() returns to refer to the open file. Finally, the output displays a column for
errors (ERR) and a location of files that open() tries to open (PATH).

If a command tries to read a non-existent file, then the FD column returns -1 and the ERR
column prints a value corresponding to the relevant error. As a result, opensnoop can help you
identify an application that does not behave properly.

To see more details, examples, and options for opensnoop, refer to the
/usr/share/bcc/tools/doc/opensnoop_example.txt file.

For more information about open(), see open(2) manual pages.

Using biotop to examine the I/O operations on the disk

1. Execute the biotop program in one terminal:

/usr/share/bcc/tools/biotop 30

The command enables you to monitor the top processes, which perform I/O operations on the
disk. The argument ensures that the command will produce a 30 second summary.

NOTE

CHAPTER 10. ANALYZING SYSTEM PERFORMANCE WITH BPF COMPILER COLLECTION

69

NOTE

When no argument provided, the output screen by default refreshes every 1
second.

2. In another terminal execute for example :

dd if=/dev/vda of=/dev/zero

The command above reads the content from the local hard disk device and writes the output to
the /dev/zero file. This step generates certain I/O traffic to illustrate biotop.

3. The terminal running biotop shows the output similar to the following:

PID COMM D MAJ MIN DISK I/O Kbytes AVGms
9568 dd R 252 0 vda 16294 14440636.0 3.69
48 kswapd0 W 252 0 vda 1763 120696.0 1.65
7571 gnome-shell R 252 0 vda 834 83612.0 0.33
1891 gnome-shell R 252 0 vda 1379 19792.0 0.15
7515 Xorg R 252 0 vda 280 9940.0 0.28
7579 llvmpipe-1 R 252 0 vda 228 6928.0 0.19
9515 gnome-control-c R 252 0 vda 62 6444.0 0.43
8112 gnome-terminal- R 252 0 vda 67 2572.0 1.54
7807 gnome-software R 252 0 vda 31 2336.0 0.73
9578 awk R 252 0 vda 17 2228.0 0.66
7578 llvmpipe-0 R 252 0 vda 156 2204.0 0.07
9581 pgrep R 252 0 vda 58 1748.0 0.42
7531 InputThread R 252 0 vda 30 1200.0 0.48
7504 gdbus R 252 0 vda 3 1164.0 0.30
1983 llvmpipe-1 R 252 0 vda 39 724.0 0.08
1982 llvmpipe-0 R 252 0 vda 36 652.0 0.06
...

The results shows that the dd process, with the process ID 9568, performed 16,294 read
operations from the vda disk. The read operations reached total of 14,440,636 Kbytes with an
average I/O time 3.69 ms.

To see more details, examples, and options for biotop, refer to the
/usr/share/bcc/tools/doc/biotop_example.txt file.

For more information about dd, see dd(1) manual pages.

Using xfsslower to expose unexpectedly slow file system operations

1. Execute the xfsslower program in one terminal:

/usr/share/bcc/tools/xfsslower 1

The command above measures the time the XFS file system spends in performing read, write,
open or sync (fsync) operations. The 1 argument ensures that the program shows only the
operations that are slower than 1 ms.

NOTE

Red Hat Enterprise Linux 8 Managing, monitoring and updating the kernel

70

NOTE

When no arguments provided, xfsslower by default displays operations slower
than 10 ms.

2. In another terminal execute, for example, the following:

$ vim text

The command above creates a text file in the vim editor to initiate certain interaction with the
XFS file system.

3. The terminal running xfsslower shows something similar upon saving the file from the previous
step:

TIME COMM PID T BYTES OFF_KB LAT(ms) FILENAME
13:07:14 b'bash' 4754 R 256 0 7.11 b'vim'
13:07:14 b'vim' 4754 R 832 0 4.03 b'libgpm.so.2.1.0'
13:07:14 b'vim' 4754 R 32 20 1.04 b'libgpm.so.2.1.0'
13:07:14 b'vim' 4754 R 1982 0 2.30 b'vimrc'
13:07:14 b'vim' 4754 R 1393 0 2.52 b'getscriptPlugin.vim'
13:07:45 b'vim' 4754 S 0 0 6.71 b'text'
13:07:45 b'pool' 2588 R 16 0 5.58 b'text'
...

Each line above represents an operation in the file system, which took more time than a certain
threshold. xfsslower is good at exposing possible file system problems, which can take form of
unexpectedly slow operations.

The T column represents operation type (Read/Write/Sync), OFF_KB is a file offset in KB.
FILENAME is the file the process (COMM) is trying to read, write, or sync.

To see more details, examples, and options for xfsslower, refer to the
/usr/share/bcc/tools/doc/xfsslower_example.txt file.

For more information about fsync, see fsync(2) manual pages.

CHAPTER 10. ANALYZING SYSTEM PERFORMANCE WITH BPF COMPILER COLLECTION

71

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. THE LINUX KERNEL RPM
	1.1. WHAT AN RPM IS
	Types of RPM packages

	1.2. THE LINUX KERNEL RPM PACKAGE OVERVIEW
	1.3. DISPLAYING CONTENTS OF THE KERNEL PACKAGE

	CHAPTER 2. UPDATING KERNEL WITH YUM
	2.1. WHAT IS THE KERNEL
	2.2. WHAT IS YUM
	2.3. UPDATING THE KERNEL
	2.4. INSTALLING THE KERNEL

	CHAPTER 3. MANAGING KERNEL MODULES
	3.1. INTRODUCTION TO KERNEL MODULES
	3.2. KERNEL MODULE DEPENDENCIES
	3.3. LISTING CURRENTLY LOADED KERNEL MODULES
	3.4. DISPLAYING INFORMATION ABOUT KERNEL MODULES
	3.5. LOADING KERNEL MODULES AT SYSTEM RUNTIME
	3.6. UNLOADING KERNEL MODULES AT SYSTEM RUNTIME
	3.7. LOADING KERNEL MODULES AUTOMATICALLY AT SYSTEM BOOT TIME
	3.8. PREVENTING KERNEL MODULES FROM BEING AUTOMATICALLY LOADED AT SYSTEM BOOT TIME

	CHAPTER 4. CONFIGURING KERNEL COMMAND LINE PARAMETERS
	4.1. WHAT ARE KERNEL COMMAND LINE PARAMETERS
	4.2. WHAT IS GRUBBY
	4.3. WHAT ARE BOOT ENTRIES
	4.4. SETTING KERNEL COMMAND LINE PARAMETERS
	4.4.1. Changing kernel command line parameters for all boot entries
	4.4.2. Changing kernel command line parameters for a single boot entry

	CHAPTER 5. CONFIGURING KERNEL PARAMETERS AT RUNTIME
	5.1. WHAT ARE KERNEL PARAMETERS
	5.2. SETTING KERNEL PARAMETERS AT RUNTIME
	5.2.1. Configuring kernel parameters temporarily with sysctl
	5.2.2. Configuring kernel parameters permanently with sysctl
	5.2.3. Using configuration files in /etc/sysctl.d/ to adjust kernel parameters
	5.2.4. Configuring kernel parameters temporarily through /proc/sys/

	5.3. KEEPING KERNEL PANIC PARAMETERS DISABLED IN VIRTUALIZED ENVIRONMENTS
	5.3.1. What is a soft lockup
	5.3.2. Parameters controlling kernel panic
	5.3.3. Spurious soft lockups in virtualized environments

	5.4. ADJUSTING KERNEL PARAMETERS FOR DATABASE SERVERS
	5.4.1. Introduction to database servers
	5.4.2. Parameters affecting performance of database applications
	Additional resources

	CHAPTER 6. GETTING STARTED WITH KERNEL LOGGING
	6.1. WHAT IS THE KERNEL RING BUFFER
	6.2. ROLE OF PRINTK ON LOG-LEVELS AND KERNEL LOGGING

	CHAPTER 7. INSTALLING AND CONFIGURING KDUMP
	7.1. WHAT IS KDUMP
	7.2. INSTALLING KDUMP
	7.3. CONFIGURING KDUMP ON THE COMMAND LINE
	7.3.1. Configuring kdump memory usage
	7.3.2. Configuring the kdump target
	7.3.3. Configuring the core collector
	7.3.4. Configuring the kdump default failure responses
	7.3.5. Enabling and disabling the kdump service

	7.4. CONFIGURING KDUMP IN THE WEB CONSOLE
	7.4.1. Configuring kdump memory usage and target location in web console

	7.5. SUPPORTED KDUMP CONFIGURATIONS AND TARGETS
	7.5.1. Memory requirements for kdump
	7.5.2. Minimum threshold for automatic memory reservation
	7.5.3. Supported kdump targets
	7.5.4. Supported kdump filtering levels
	7.5.5. Supported default failure responses
	7.5.6. Estimating kdump size

	7.6. TESTING THE KDUMP CONFIGURATION
	7.7. ANALYZING A CORE DUMP
	7.7.1. Installing the crash utility
	7.7.2. Running and exiting the crash utility
	7.7.3. Displaying message buffer, backtrace, and other indicators in the crash utility
	Displaying the message buffer
	7.7.3.1. Displaying a backtrace
	7.7.3.2. Displaying a process status
	7.7.3.3. Displaying virtual memory information
	7.7.3.4. Displaying open files

	7.7.4. Using Kernel Oops Analyzer

	CHAPTER 8. APPLYING PATCHES WITH KERNEL LIVE PATCHING
	8.1. LIMITATIONS OF KPATCH
	8.2. SUPPORT FOR THIRD-PARTY LIVE PATCHING
	8.3. ACCESS TO KERNEL LIVE PATCHES
	8.4. COMPONENTS OF KERNEL LIVE PATCHING
	8.5. HOW KERNEL LIVE PATCHING WORKS
	8.6. ENABLING KERNEL LIVE PATCHING
	8.6.1. Subscribing to the live patching stream

	8.7. UPDATING KERNEL PATCH MODULES
	8.8. DISABLING KERNEL LIVE PATCHING
	8.8.1. Removing the live patching package
	8.8.2. Uninstalling the kernel patch module
	8.8.3. Disabling kpatch.service

	CHAPTER 9. SETTING LIMITS FOR APPLICATIONS
	9.1. WHAT ARE CONTROL GROUPS
	9.1.1. Control groups version 1
	9.1.2. Control groups version 2

	9.2. WHAT ARE KERNEL RESOURCE CONTROLLERS
	9.3. WHAT ARE NAMESPACES
	9.4. USING CONTROL GROUPS THROUGH A VIRTUAL FILE SYSTEM
	9.4.1. Setting memory limits to applications through cgroups-v1

	CHAPTER 10. ANALYZING SYSTEM PERFORMANCE WITH BPF COMPILER COLLECTION
	10.1. BCC
	10.2. INSTALLING BCC
	10.3. USING SELECTED BCC-TOOLS FOR PERFORMANCE ANALYSES
	Using execsnoop to examine the system processes
	Using opensnoop to track what files a command opens
	Using biotop to examine the I/O operations on the disk
	Using xfsslower to expose unexpectedly slow file system operations

