《计算机网络》实验教学指导

实验八: 通过路由器实现 VLAN 间通信

一、实验目的

- 1、理解路由器的基本工作原理;
- 2、掌握路由器的管理配置方法,并能够实现路由器的基本配置;
- 3、理解路由组网的方法,并掌握静态路由的具体使用;
- 4、理解基于路由器的园区网的结构,并进一步体会园区网的设计思路。

二、实验环境

- 1、Windows 7 操作系统,安装 Putty 软件;
- 2、每位学生配备计算机一台;
- 3、每个小组配备:二层交换机2台,路由交换机2台,路由器1台。

三、实验要求

- 1、完成网络拓扑设计、VLAN 设计和 IP 地址规划工作;
- 2、完成二层交换机、路由器的配置;
- 3、完成 VLAN 的配置工作;
- 4、完成路由器的配置工作,并实现 VLAN 间通信;
- 5、网络通信测试。

四、实验原理

- 1、数据链路层、网络层的基本原理;
- 2、VLAN 的基本原理;
- 3、二层交换机、路由交换机、路由器的工作原理和配置方法;
- 4、局域网、园区网的规划设计和基本原理。

五、实验步骤

说明:本实验指导所使用的二层交换机为神州数码 DCS-3950、路由交换机为 DCRS-5650、路由器为 DCR-2600,所有实验操作和命令都以此为基础。本实验 最低需要 2 台 DCN DCS-3950、1 台 DCRS-5650、1 台 DCR DCR-2600、6 台 主机支持。

1、问题的提出

(1)在实验七中,曾经通过两台二层交换机、一台路由交换机设计了一个园区网,通过 VLAN 划分实现了跨交换机的 VLAN,通过路由交换机实现了 VLAN 间通信。具体如图 8-1 所 示。

(2)路由交换机不能够阻止广播风暴的产生,在园区网规模扩大的情况下,使用路由交换机组 网的成本和风险都将增加,使用路由器作为园区网的核心是更为合适的方案。

(3) 实验七的园区网设计中,是否可以通过路由器替代路由交换机进行实现呢?

2、网络设计

(1) 按照上述的需求,进行网络拓扑设计。如图 8-2 所示。

(2) 设计 VLAN, 具体的 VLAN 规划如表 8-1 所示。

序号	VLAN ID	VLAN name 交换机		接入端口	端口性质
1	1001	Labs1	S-1	1/1 - 1/8	unTag Port
2	1002	Labs2	S-1	1/9 – 1/16	unTag Port
3	1003	Labs3	S-1	1/17 – 1/24	unTag Port
4	1001	Labs1	S-2	1/1 - 1/8	unTag Port
5	1002	Labs2	S-2	1/9 – 1/16	unTag Port

表 8-1 VLAN 配置信息

6	1003	Labs3	S-2	1/17 - 1/24	unTag Port

注意: 交换机 S-1、交换机 S-2 的 26 号端口为 Tag 端口,作为 VLAN 的上联通信端口。

(3) 设计 IP 地址,具体的 IP 地址的规划如表 8-2 所示。

表 8-2 IP 地址规划表

序号	主机名称	网络配置	网关	接入位置
1	主机 A	172.16.100.101 / 255.255.255.0	172.16.100.1	S-1 1/5
2	主机 B	172.16.100.102 / 255.255.255.0	172.16.100.1	S-2 1/7
3	主机 C	172.16.100.103 / 255.255.255.0	172.16.100.1	S-2 1/2
4	主机 X	192.168.100.151 / 255.255.255.0	192.168.100.1	S-1 1/14
5	主机 Y	192.168.100.152 / 255.255.255.0	192.168.100.1	S-2 1/16
6	主机 Z	192.168.100.153 / 255.255.255.0	192.168.100.1	S-2 1/10
7	交换机 S-1	172.16.0.201 / 255.255.255.0		
8	交换机 S-2	172.16.0.202 / 255.255.255.0		
9	路由器 R-1	172.16.0.101 / 255.255.255.0		

3、网络物理联通和 VLAN 实现

(1) 按照上述网络拓扑结构进行网络实施,完成物理链路的连通。

(2) 按照上述 IP 地址规划表的配置,完成主机 A、主机 B、主机 C、主机 X、主机 Y、主机 Z 的网络配置。

(3) 按照上述 VLAN 规划表和 IP 地址规划表,完成交换机 S-1、交换机 S-2 的配置。

4、配置路由器实现 VLAN 间通信

- (1) 通过 Console 接口连接路由路由器 R-1。
- (2) 配置路由器的基本信息。

路由器 R-1 的基本配置命令参考:

#使得路由器可用
enable
#查看路由器的接口信息
show interface
#查看路由器的快速以太网接口 0/0 信息
show interface FastEthernet 0/0
#查看路由器的快速以太网接口 0/3 信息
show interface FastEthernet 0/3
#配置快速以太网接口 0/0 信息
Router_config#interface fastEthernet 0/0
#使得 0/0 接口可用
Router_config_f0/0#no shutdown
Router_config_f0/0#exit
#配置快速以太网接口 0/0 的第一个虚拟接口

Router_config#interface fastEthernet 0/0.1 #使得虚拟接口 0/0.1 可以识别 VLAN 1001 Router_config_f0/0.1#encapsulation dot1Q 1001 #配置虚拟接口 0/0.1 的 IP 地址 Router_config_f0/0.1#ip address 172.16.100.1 255.255.255.0 Router_config_f0/0.1#exit

#配置快速以太网接口 0/0 的第二个虚拟接口 Router_config#interface fastEthernet 0/0.2 #使得虚拟接口 0/0.2 可以识别 VLAN 1002 Router_config_f0/0.2#encapsulation dot1Q 1002 #配置虚拟接口 0/0.2 的 IP 地址 Router_config_f0/0.2#ip address 192.168.100.1 255.255.255.0 Router_config_f0/0.2#exit

#配置快速以太网接口 0/3 信息 Router_config#interface fastEthernet 0/3 #使得 0/3 接口可用 Router_config_f0/3#no shutdown Router_config_f0/3#exit

#配置快速以太网接口 0/3 的第一个虚拟接口 Router_config#interface fastEthernet 0/3.1 #使得虚拟接口 0/3.1 可以识别 VLAN 1001 Router_config_f0/3.1#encapsulation dot1Q 1001 #配置虚拟接口 0/3.1 的 IP 地址 Router_config_f0/3.1#ip address 172.16.100.1 255.255.255.0 #由于 172.16.100.0 的网络已经在该路由器上存在,因此配置错误。 %err: IP network 172.16.100.0 overlaps with FastEthernet0/0.1 #配置虚拟接口 0/3.1 的 IP 地址为 172.16.101.1 Router_config_f0/3.1#ip address 172.16.101.1 255.255.255.0 Router_config_f0/3.1#exit

#配置快速以太网接口 0/3 的第二个虚拟接口 Router_config#interface fastEthernet 0/3.2 #使得虚拟接口 0/3.2 可以识别 VLAN 1001 Router_config_f0/3.2#encapsulation dot1Q 1002 #配置虚拟接口 0/3.2 的 IP 地址 Router_config_f0/3.2#ip address 192.168.101.1 255.255.255.0 Router_config_f0/3.2#exit

路由器 R-1 的配置参考:

Router_config#show running-config Building configuration...

Current configuration:

!

```
lversion 1.3.3G
service timestamps log date
service timestamps debug date
no service password-encryption
ļ
!
!
!
!
I
1
gbsc group default
!
1
!
ļ
!
ļ
ļ
I
!
ļ
ļ
interface FastEthernet0/0
 ip address 192.168.1.42 255.255.255.0
 no ip directed-broadcast
ļ
interface FastEthernet0/0.1
 ip address 172.16.100.1 255.255.255.0
 no ip directed-broadcast
 encapsulation dot1Q 1001
 bandwidth 100000
 delay 1
ļ
interface FastEthernet0/0.2
 ip address 192.168.100.1 255.255.255.0
 no ip directed-broadcast
 encapsulation dot1Q 1002
 bandwidth 100000
 delay 1
!
interface FastEthernet0/3
 no ip address
 no ip directed-broadcast
L
interface FastEthernet0/3.1
 ip address 172.16.101.1 255.255.255.0
 no ip directed-broadcast
 encapsulation dot1Q 1001
```

bandwidth 100000
delav 1
interface EastEthernet0/3.2
in address 192 168 101 1 255 255 255 0
no in directed-broadcast
encansulation dot10 1002
bandwidth 10000
delay 1
interface Serial0/1
no in address
no in directed broadcast
: interface Social0/2
no in directed broadcast
: interface Acure0/0
ne in address
no ip duciess
: in route 102 168 2.0 255 255 255 0 102 168 1 2
ip Toule 192.108.2.0 200.200.200.200.102.108.1.2

(3) 查看路由器 R-1 的路由信息。

查看命令和路由信息如下:

Router_config#show ip route							
Codes:	Codes: C - connected, S - static, R - RIP, B - BGP, BC - BGP connected						
	D - DEIGRP, DEX - ex	kternal DEIGRP, O - OSPF, OIA - OSPF inter area					
	ON1 - OSPF NSSA ex	xternal type 1, ON2 - OSPF NSSA external type 2					
	OE1 - OSPF external	type 1, OE2 - OSPF external type 2					
	DHCP - DHCP type						
VRF ID:	VRF ID: 0						
С	172.16.100.0/24	is directly connected, FastEthernet0/0.1					
С	172.16.101.0/24	is directly connected, FastEthernet0/3.1					
С	192.168.100.0/24	is directly connected, FastEthernet0/0.2					
С	192.168.101.0/24	is directly connected, FastEthernet0/3.2					

(4)由于我们**调整了路由器 R-1 的虚拟接口 0/3.1 和虚拟接口 0/3.2 的网络地址和 IP 地址**, 因此需要调整主机的 IP 配置,具体调整如表 8-3 所示。

序号	主机名称	网络配置	网关	接入位置
1	主机 A	172.16.100.101 / 255.255.255.0	172.16.100.1	S-1 1/5
2	主机 B	172.16.101.102 / 255.255.255.0	172.16.101.1	S-2 1/7
3	主机 C	172.16.101.103 / 255.255.255.0	172.16.101.1	S-2 1/2
4	主机 X	192.168.100.151 / 255.255.255.0	192.168.100.1	S-1 1/14
5	主机 Y	192.168.101.152 / 255.255.255.0	192.168.101.1	S-2 1/16
6	主机 Z	192.168.101.153 / 255.255.255.0	192.168.101.1	S-2 1/10
7	交换机 S-1	172.16.0.201 / 255.255.255.0		
8	交换机 S-2	172.16.0.202 / 255.255.255.0		
9	路由器 R-1	172.16.0.101 / 255.255.255.0		

表 8-3 调整后 IP 地址规划表

(5) 交换机 S-1、交换机 S-2、路由器 R-1 的配置完成后,进行主机的连通性测试。并填 写表 8-34。

表 8-4 通过路由器实现网间通信的测试结果(连通性测试)

序号	请求主机	接入位置	响应主机	接入位置	Ping 测试结果
1	主机 A	S-1 1/5	主机 B	S-2 1/7	
2	主机 A	S-1 1/5	主机 C	S-2 1/2	
3	主机 A	S-1 1/5	主机 X	S-1 1/14	
4	主机 A	S-1 1/5	主机 Y	S-2 1/16	
5	主机 A	S-1 1/5	主机 Z	S-2 1/10	
6	主机 B	S-2 1/7	主机 A	S-1 1/5	

1.0						
	7	主机 B	S-2 1/7	主机 C	S-2 1/2	
	8	主机 B	S-2 1/7	主机 X	S-1 1/14	
	9	主机 B	S-2 1/7	主机 Y	S-2 1/16	
	10	主机 B	S-2 1/7	主机 Z	S-2 1/10	
	11	主机 X	S-1 1/14	主机 A	S-1 1/5	
	12	主机 X	S-1 1/14	主机 B	S-2 1/7	
	13	主机 X	S-1 1/14	主机 C	S-2 1/2	
	14	主机 X	S-1 1/14	主机 Y	S-2 1/16	
	15	主机 X	S-1 1/14	主机 Z	S-2 1/10	
	16	主机 Y	S-2 1/16	主机 A	S-1 1/5	
	17	主机 Y	S-2 1/16	主机 B	S-2 1/7	
	18	主机 Y	S-2 1/16	主机 C	S-2 1/2	
	19	主机 Y	S-2 1/16	主机 X	S-1 1/14	
	20	主机 Y	S-2 1/16	主机 Z	S-2 1/10	

要求:

1、请完成上述测试,并填写表 8-3 到实验报告册中。

2、请根据测试结果进行分析,并将分析结果填写到实验报告册中。

(6) 通过 Tracert 命令进行主机间通信测试,并填写下表 8-5。

序号	请求主机	接入位置	响应主机	接入位置	Tracert 测试结果
1	主机 A	S-1 1/5	主机 B	S-2 1/7	路由 1: 路由 2: …
2	主机 A	S-1 1/5	主机 C	S-2 1/2	路由 1: 路由 2:
3	主机 A	S-1 1/5	主机 X	S-1 1/14	路由 1: 路由 2: …
4	主机 A	S-1 1/5	主机 Y	S-2 1/16	路由 1: 路由 2: …
5	主机 A	S-1 1/5	主机 Z	S-2 1/10	路由 1: 路由 2: …

表 8-4 通过路由器实现网间通信的测试结果(路由测试)

要求:

1、请完成上述测试,并填写表 8-4 到实验报告册中。

2、请根据测试结果进行分析,说明主机 A 到不同主机的路由有什么不同?并分析说明原因。

3、为什么需要调整交换机 S-2 对应主机的 IP 地址?

六、自主实验步骤

1、使用路由器实现企业网

(1)网络实际:某单位有三栋办公楼L1、L2、L3。每栋楼通过1台路由交换机进行汇聚,每层楼通过二层交换机实现接入,单位通过1台路由器作为网络核心。具体网络拓扑如图 8-3 所示。

(2) 内部网络需求:该单位共有 8 个部门,分布在三栋办公楼内。该单位的网络设计要求 是单位内部是一个园区网,每个部门是一个局域网。其中部门 A、B、C 之间能够互相访问,部 门 M、N 之间能够访问,部门 X、Y、Z 之间能够互相访问,部门 A、B、C、部门 M、N 和部 门 X、Y、Z 之间不能够进行访问。

(3) 接入网络需求:单位通过路由器接入互联网。接入链路为1条运营商的数字链路,带 宽为10Mpbs,拥有公网 IP 地址2个。

(4)用户管理需求:内部用户访问互联网,需要进行账号认证,内部局域网访问不使用账 号认证。

(5) 请设计该企业网,包括 VLAN 设计、IP 地址设计、路由设计。

(6) 请使用 DCN DCR-2600、DCN DCRS-5650、DCN DCS-3950 设备为基础进行实验设计,并完成路由器、路由交换机、交换机的具体配置。

要求:

1、将网络设计的设计报告填写到实验报告册中。

10

2、将路由器、路由交换机、交换机配置信息,填写到实验报告册中。

七、思考及问答

1、路由器的工作原理

- (1) 路由器的工作原理是什么?
- (2) 路由交换机和路由器的工作原理是否相同?

2、企业网规划

- (1) 什么是企业网? 企业网和互联网有哪些不同?
- (2) 进行企业网规划的时候,应该遵循哪些规则?有哪些方法?

要求:

1、请将研究的结果填写到实验报告册中。