《计算机网络》实验指导

实验五: ARP 协议分析

一、实验目的

- 1、掌握报文分析的基本方法;
- 2、掌握 Wireshark 软件的基本使用方法;
- 3、掌握使用 Wireshark 进行数据包抓取和分析的基本操作;
- 4、理解 ARP 报文格式和各字段含义;
- 5、理解 ARP 协议的通信过程。

二、实验学时

2 学时

三、实验类型

验证性

四、实验需求

1、硬件

每人配备计算机1台。

2、软件

Windows 7 以上操作系统,安装 Wireshark 网络嗅探软件。

3、网络

实验室局域网支持, 能够访问校园网。

4、工具

无。

五、实验理论

- 1、网络嗅探的工作原理;
- 2、Wireshark 软件的基本使用方法;
- 3、ARP协议原理与报文结构;
- 4、请查阅资料,列举几种常见的网络分析工具,并填写表 5-1。

表 5-1 网络分析工具对比分析一览表

序号	软件名称	版本号	软件开发商	安装环境
1				

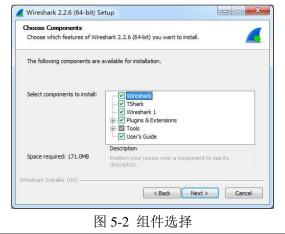
六、实验任务

- 1、完成 Wireshark 软件的安装和基本操作的学习;
- 2、完成 ARP 报文结构的分析;
- 3、完成 ARP 通信过程的分析。

七、实验内容及步骤

1、Wireshark 的基本操作

(1) 下载软件包

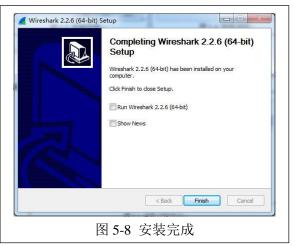

可通过官方网站(http://www.wireshark.org)获得 Wireshark 软件安装程序;

可通过本课程网站(http://network.ke.51xueweb.cn)下载本教程所使用的 Wireshark 软件版本。

(2) 安装软件


①双击 Wireshark 安装程序,进入如图 5-1 所示的 Wireshark 安装界面,点击【Next >】开始进行安装。在安装过程中,会提示用户选择安装相关组件程序,选择默认安装组件,具体如图 5-2 所示。

- ②选择自定义配置,如创建快捷方式和文件扩展等,如图 5-3 所示。
- ③用户可使用默认的 Wireshark 安装目录,也可自行修改安装路径,如图 5-4 所示。

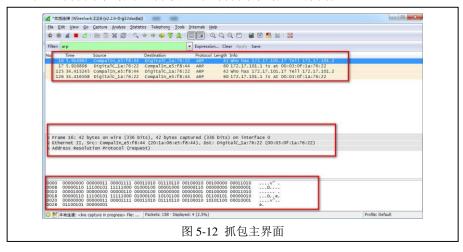

④选择安装 WinPcap 软件。WinPcap 是针对 Windows 32 平台上的抓包和网络分析的一个框架软件,是 Windows 平台下免费、公共的网络访问系统。选择安装该框架软件,如图 5-5 所示,点击【Next >】继续进行 Wireshark 软件安装。

- ⑤不安装 USBPcap 软件。USBPcap 是针对 USB 设备进行分析的一个框架软件,本实验不针对 USB 设备进行网络分析,所以不安装该框架,如图 5-6 所示。点击【Install】,开始进行 Wireshark 软件安装。
- ⑥Wireshark 软件在安装过程中将安装 WinPcap 框架,根据默认安装提示,完成该框架的安装,如图 5-7 所示。
 - ⑦点击【Finish】完成 Wireshark 软件的安装,如图 5-8 所示。

⑧打开 Wireshark 软件,界面展示如图 5-9 所示,选择某一网卡适配器,选择【Start】,可查看该网卡上所传输的数据报文信息,如图 5-10 所示。



2、ARP 数据包分析


(1) 创建 ARP 协议抓包任务

打开 Wireshark, 在【Filter】选项中输入报文过滤条件"<u>arp</u>", 选择【Start】, 开始进行报文采集, 如图 5-11 所示。

(2) 对数据包进行分析

在 Wireshark 的抓包窗体中,可以发现整个软件分为三个区域,如图 5-12 所示。上部分为 抓取的数据包,中间部分为数据详细分析,下部分为数据包的内容。

(3) 从多条 ARP 协议数据报文中任意选择其中一条数据报文,对该数据报文进行详细分析,并填写表 5-2。

表 5-2 ARP 报文分析

序号	字段名称	字段长度	起始位置	字段值	字段表示的信息	
1	Hardware type		第 位			
2	Protocol type		第 位			
3	Hardware size		第 位			
4	Protocol size		第 位			
5	Opcode		第 位			
6	Sender MAC address		第 位			
7	Sender IP address		第 位			
8	Target MAC address		第 位			
9	Target IP address		第 位			
	抓取数据包的详细内容:					
10						

3、ARP 通信过程数据包分析

(1) 创建 ARP 协议抓包任务

根据过程2中的方法获取ARP协议通信过程的数据包。

(2) ARP 请求报文分析

在 Wireshark 的抓包窗体中,选择一条请求数据报文进行详细分析,如图 5-13 所示,并填写表 5-3。

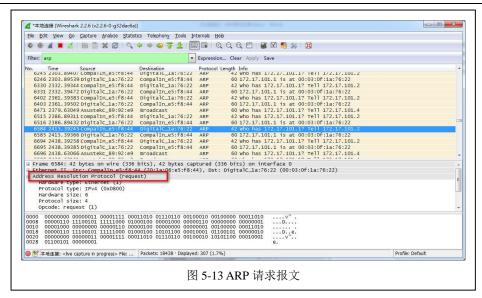


表 5-3 ARP 请求报文分析

序号	字段名称	字段长度	起始位置	字段值	字段表示的信息
1	Hardware type		第 位		
2	Protocol type		第 位		
3	Hardware size		第 位		
4	Protocol size		第 位		
5	Opcode		第 位		
6	Sender MAC address		第 位		
7	Sender IP address		第 位		
8	Target MAC address		第 位		
9	Target IP address		第 位		
	抓取数据包的详细内容	容:			
10					

(3) ARP 应答报文分析

在 Wireshark 的抓包窗体中,选择上述请求报文所对应的应答报文进行详细分析,如图 5-14 所示,并填写表 5-4。

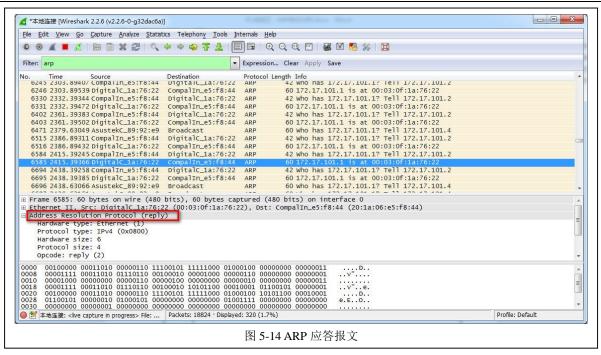


表 5-4 ARP 应答报文分析

序号	字段名称	字段长度	起始位置	字段值	字段表示的信息
1	Hardware type		第 位		
2	Protocol type		第 位		
3	Hardware size		第 位		
4	Protocol size		第 位		
5	Opcode		第 位		
6	Sender MAC address		第 位		
7	Sender IP address		第 位		
8	Target MAC address		第 位		
9	Target IP address		第 位		
	抓取数据包的详细内容	答:			
10					

(4) 对比分析

根据 ARP 请求和应答的报文内容,比较两个数据报文内容的 5 个关键差别,并填写表 5-5。

表 5-5 ARP 通信过程报文对比分析

序号	字段名称	请	求报文	应答报文			
		字段值	字段表示信息	字段值	字段表示的信息		
1							
2							
3							
4							
5							
	对比描述详细内容:						
6							

八、实验分析

1、ARP 原理

- (1) ARP 的基本原理是什么?
- (2) ARP 的主要作用是什么?

2、ARP 通信报文分析

- (1) 观察实验过程中捕获的多个 ARP 请求报文,观察这些报文的以太网目的地址是否相同,分析其原因?
- (2) 观察实验过程中捕获的多个 ARP 应答报文,观察这些报文的以太网目的地址是否相同,分析其原因?