实验五: 使用路由器组网

一、实验目的

- 1、了解路由器;
- 2、掌握路由器的工作原理;
- 3、掌握基于 RIP 构建园区网;
- 4、掌握基于 OSPF 构建园区网。
- 二、实验学时

2 学时

三、实验类型

综合型

四、实验需求

1、硬件

每人配备计算机1台,不低于双核CPU、8G内存、500GB硬盘。

2、软件

推荐 Ubuntu Desktop 操作系统,安装 GNS 3 仿真软件。 支持 Windows 操作系统,安装 GNS 3 仿真软件。 报文分析使用 Wireshark。

3、网络

计算机使用固定 IP 地址接入局域网,并支持对互联网的访问。

4、工具

无

五、实验任务

- 1、完成基于 RIP 构建园区网;
- 2、完成 RIP 通信过程分析;
- 3、完成基于 OSPF 构建园区网;
- 4、完成 OSPF 通信过程分析。

六、实验考核

- 1、基本考核:提交实验报告册;
- 2、实验考核:现场实验操作考核。

七、实验内容及步骤

任务 1: 使用 RIP 构建园区网

步骤 01:网络规划 ①拓扑结构,如图 5-1 所示。

图 5-1 网络拓扑

②拓扑说明

表 5-1 主机地址规划表

设备	设备类型	规格型号	备注
Host-1~Host-8	终端主机		
SW-1~SW-4	二层交换机	CISCO C3640 (二层模块)	
RS-1~RS-2	路由交换机	CISCO C3640	
R-1~R-3	路由器	CISCO C7200	

表 5-2 交换机接口与 VLAN 规划表

交换机	接口	VLANID	连接设备	接口类型
SW-1	f0/1	11	Host-1	Access
SW-1	f0/2	12	Host-2	Access
SW-1	f0/0		RS-1	Trunk
SW-2	f0/1	11	Host-3	Access
SW-2	f0/2	12	Host-4	Access
SW-2	f0/0		RS-1	Trunk
SW-3	f0/1	11	Host-5	Access
SW-3	f0/2	12	Host-6	Access

SW-3	f0/0		RS-2	Trunk
SW-4	f0/1	11	Host-7	Access
SW-4	f0/2	12	Host-8	Access
SW-4	f0/0		RS-2	Trunk
RS-1	f0/1		SW-1	Trunk
RS-1	f0/2		SW-2	Trunk
RS-1	f0/0	100	RS-2	Access
RS-2	f0/1		SW-3	Trunk
RS-2	f0/2		SW-4	Trunk
RS-2	f0/0	100	RS-1	Access

表 5-3 主机地址规划表

主机	IP 地址/子网掩码	网关	接入位置	所属 VLANID
Host-1	172.16.64.1 /24	172.16.64.254	SW-1 f0/1	11
Host-2	172.16.65.1 /24	172.16.65.254	SW-1 f0/2	12
Host-3	172.16.64.2 /24	172.16.64.254	SW-2 f0/1	11
Host-4	172.16.65.2 /24	172.16.65.254	SW-2 f0/2	12
Host-5	192.168.64.1 /24	192.168.64.254	SW-3 f0/1	11
Host-6	192.168.65.1 /24	192.168.65.254	SW-3 f0/2	12
Host-7	192.168.64.2 /24	192.168.64.254	SW-4 f0/1	11
Host-8	192.168.65.2 /24	192.168.65.254	SW-4 f0/2	12

表 5-4 路由接口地址规划表

设备名称	接口名称	接口地址	备注
RS-1	VLAN11	172.16.64.254 /24	VLAN11 的 SVI
RS-1	VLAN12	172.16.65.254 /24	VLAN12 的 SVI
RS-1	VLAN100	10.0.1.2 /30	VLAN100 的 SVI
RS-2	VLAN11	192.168.64.254 /24	VLAN11 的 SVI
RS-2	VLAN12	192.168.65.254 /24	VLAN12 的 SVI
RS-2	VLAN100	10.0.5.2 /30	VLAN100 的 SVI
R-1	e1/1	10.0.2.2 /30	
R-1	e1/0	10.0.4.2 /30	
R-2	e1/0	10.0.1.1 /30	
R-2	e1/1	10.0.2.1 /30	
R-2	e1/2	10.0.3.1 /30	
R-3	e1/0	10.0.5.1 /30	

R-3	e1/1	10.0.4.1 /30	
R-3	e1/2	10.0.3.2 /30	

③路由规划

表 5-5 路由规划表

路由设备	路由类型
RS-1~RS-2	RIPv2
R-1~R-3	RIPv2

步骤 02: 在 GNS3 中部署网络

在 GNS3 中, 按照网络规划创建拓扑, 如图 5-2 所示。

图 5-2 GNS3 网络结构

步骤 03: NET-A 部分网络配置

①按照表 5-3 中 IP 地址规划,设置 Host-1~Host-8 的 IP 地址和网关,操作命令如下:

参考命令:

```
Host-1> ip 172.16.64.1/24 172.16.64.254
Host-1> save
Host-2> ip 172.16.65.1/24 172.16.65.254
Host-2> save
Host-3> ip 172.16.64.2/24 172.16.64.254
Host-3> save
Host-4> ip 172.16.65.2/24 172.16.65.254
Host-4> save
```

②配置交换机 SW-1

参考命令:

//进入 VLAN 数据库模式 SW-1# vlan database //创建 VLAN11、VLAN12、VLAN100 SW-1(vlan)#vlan 11 SW-1(vlan)#vlan 12 SW-1(vlan)#vlan 100 //退出 VLAN 数据库模式,至特权模式 SW-1(vlan)#exit SW-1# //进入配置模式 SW-1#configure terminal //进入接口配置模式 SW-1(config)# interface f0/1 //设置接口为 Access 模式 SW-1(config-if)# switchport mode access //设置设置接口所属 VLAN 为 VLAN11 SW-1(config-if)# switchport access vlan 11 SW-1(config-if)# no shutdown SW-1(config-if)# exit SW-1(config)# interface f0/2 SW-1(config-if)# switchport mode access SW-1(config-if)# switchport access vlan 12 SW-1(config-if)# no shutdown SW-1(config-if)# exit SW-1(config)# SW-1(config)# interface f0/0 //设置接口为 Trunk 模式 SW-1(config-if)# switchport mode trunk //设置 Trunk 封装标准为 802.1q, Trunk 有两种封装标准, 一种是 Cisco 私//有的 ISL, 一种是行业标准 802.1Q, 一般采用 802.1Q 实现封装 SW-1(config-if)# switchport trunk encapsulation dot1q SW-1(config-if)# no shutdown SW-1(config-if)# exit SW-1(config)# exit //保存配置 SW-1# write

③配置交换机 SW-2

根据表 5-2 中规划,交换机 SW-2 接口和 VLAN 与 SW-1 相同,重复 SW-1 配置操作, 完成 SW-2 的配置。

④配置路由交换机 RS-1

参考命令:

//创建 VLAN11、VLAN12、VLAN100 RS-1#vlan database RS-1(vlan)#vlan 11 RS-1(vlan)#vlan 12 RS-1(vlan)#vlan 100 //退出 VLAN 数据库模式, 至特权模式 RS-1(vlan)#exit RS-1# //进入配置模式 RS-1#configure terminal //将接口 f0/1 配置为 trunk 模式, 封装标准为 802.1Q RS-1(config)#interface f0/1 RS-1(config-if)#switchport mode trunk RS-1(config-if)#switchport trunk encapsulation dot1q RS-1(config-if)#no shutdown RS-1(config-if)#exit

RS-1(config)# //将接口 f0/2 配置为 trunk 模式, 封装标准为 802.1Q RS-1(config)#interface f0/2 RS-1(config-if)#switchport mode trunk RS-1(config-if)#switchport trunk encapsulation dot1q RS-1(config-if)#no shutdown RS-1(config-if)#exit RS-1(config)# //将接口 f0/0 配置为 Access 模式,属于 VLAN100 RS-1(config)#interface f0/0 RS-1(config-if)#switchport mode access RS-1(config-if)#switchport access vlan100 RS-1(config-if)#no shutdown RS-1(config-if)#exit RS-1(config)# //开启路由功能 RS-1(config)#ip routing //为 VLAN11 的 SVI 接口配置 IP 地址、子网掩码 RS-1(config)#interface vlan 11 RS-1(config-if)#ip address 172.16.64.254 255.255.255.0 RS-1(config-if)#exit RS-1(config)#interface vlan 12 RS-1(config-if)#ip address 172.16.65.254 255.255.255.0 RS-1(config-if)#exit RS-1(config)#interface vlan 100 RS-1(config-if)#ip address 10.0.1.2 255.255.255.252 RS-1(config-if)#exit RS-1(config)#router rip #配置 rip RS-1(config-router)#version 2 RS-1(config-router)#network 10.0.0.0 RS-1(config-router)#network 172.16.0.0 RS-1#write

步骤 04: NET-A 部分网络联通性测试

按照表 5-6 中测试用例,使用 PING 命令进行 NET-A 部分的主机间通信测试。

表 5-6 NET-A 网络主机通信测试

源主机	目的主机	通信结果
Host-1	Host-2	
Host-1	Host-3	
Host-1	Host-4	
Host-2	Host-3	
Host-2	Host-4	
Host-3	Host-4	

实验考核要求:

● 考核点 5-1:通信测试结果填写到实验报告册。

步骤 05: NET-B 部分网络配置

参照 NET-A 部分的网络配置,根据网络规划,完成 NET-B 部分的网络。

步骤 06: NET-B 部分网络联通性测试

表 5-7 NET-B 网络主机通信测试

源主机	目的主机	通信结果
Host-5	Host-6	
Host-5	Host-7	
Host-5	Host-8	
Host-6	Host-7	
Host-6	Host-8	
Host-7	Host-8	

实验考核要求:

● 考核点 5-2:通信测试结果填写到实验报告册。

- 考核点 5-3: 主机 Host-5[~]Host-8 的配置命令填写到实验报告册。
- ▶ 考核点 5-4:交换机 SW-3、SW-4 的配置命令填写到实验报告册。
- 考核点 5-5:路由交换机 RS-2的配置命令填写到实验报告册。

步骤 07: 路由器配置

①路由器 R-1 配置

参考命令:

R-1#configure terminal #进入配置模式 R-1(config)#ip routing R-1(config)#interface e1/0 R-1(config)#no shutdown R-1(config-if)#ip address 10.0.4.2 255.255.255.252 #配置 e1/0 的 IP 地址 R-1(config-if)#exit R-1(config)#interface e1/1 R-1(config)#no shutdown R-1(config-if)#ip address 10.0.2.2 255.255.255.252 R-1(config-if)#exit R-1(config)#router rip #配置 rip R-1(config-router)#version 2 #rip 版本为 v2 R-1(config-router)#network 10.0.0.0 #配置 rip 网络 R-1(config-router)#exit R-1(config)#exit R-1#write

②路由器 R-2 配置

参考命令:

R-2#configure terminal #进入配置模式 R-2(config)#ip routing R-2(config)#interface e1/0 R-2(config)#no shutdown R-2(config-if)#ip address 10.0.1.1 255.255.255.252 #配置 e1/0 的 IP 地址 R-2(config-if)#exit R-2(config)#interface e1/1 R-2(config)#no shutdown R-2(config-if)#ip address 10.0.2.1 255.255.255.252 R-2(config-if)#exit R-2(config)#interface e1/2 R-2(config)#no shutdown R-2(config-if)#ip address 10.0.3.1 255.255.255.252 R-2(config-if)#exit R-2(config)#router rip #配置 rip R-2(config-router)#version 2 #rip 版本为 v2 R-2(config-router)#network 10.0.0.0 #配置 rip 网络 R-2(config-router)#exit R-2(config)#exit R-2#write

③路由器 R-3 接口配置

参照 R-1、R-2 部分的网络配置,根据网络规划,完成 R-3 的网络配置。

步骤 08: 全网通信测试

表 5-8 全网主机通信测试

源主机	目的主机	通信结果
Host-1	Host-2	
Host-1	Host-3	
Host-1	Host-4	
Host-1	Host-5	
Host-1	Host-6	
Host-1	Host-7	
Host-1	Host-8	

实验考核要求:

- 考核点 5-6:通信测试结果填写到实验报告册。
- 考核点 5-7:路由器 R-3 的配置命令填写到实验报告册。

任务 2: RIP 通信过程分析

步骤 01:设置抓包点,启动 Wireshark 进行抓包 在 R-1 与 R-2 之间设置抓包点,如图 5.3 所示,启动 Wireshark 抓包。

图 5-3 设置抓包点

步骤 02: 记录抓包点处的报文

等待一定时间,在Wireshark 中输入 rip,筛选出 RIP 的数据包,选择其中一条分析,如 图 5-4 所示。

	*- [R-2 Ethernet 1/1 to R-1 Ethernet 1/1] – 🗆 😣										
<u>F</u> ile	<u>E</u> dit <u>V</u> iew	<u>G</u> o <u>C</u> apture	<u>A</u> nalyze	<u>S</u> tatistics	Telephon	<u>v W</u> irele	ss <u>T</u> ools	<u>H</u> elp			
) 📔 🛅 💈	R 🖸 🤇	2 < >	🍫 🍋	-1		- 1 •			
📕 ri	р										+
No.	Time		Source		De	estination		Protocol	Length Info		
	2 3.113	614	10.0.2	2.2	22	24.0.0.9)	RIPv2	86 Response		
	5 10.30	0584		2.1	22	24.0.0.9)	RIPV2	106 Response		
Ĺ.	12 36.04	7657	10.0.2	2.1	22	24.0.0.9		RIPV2 RIPV2	106 Response		
											_
•	E. 400				400 hut-				taufaan id O		•
	rame 5: 100 thernet II	Src: ca:0	W1re (848 8:0f:c6:0	3 D1ts), 90:1d (ca	106 Dyte:	s captui 6:00:1d	rea (848)) Dst: Ti	DITS) ON IN Pv4mcast 09	(01:00:5e:00:00:	99)	
> I	nternet Pro	tocol Vers	ion 4, Sr	rc: 10.0.	2.1, Dst	: 224.0	.0.9		(011001001001001	,	
→ U:	ser Datagra	am Protocol	, Src Por	rt: 520,	Dst Port	: 520					
- R	outing Info	ormation Pro	otocol								
	Version: I	RIPv2 (2))								
-	IP Address	s: 10.0.1.0	, Metric	: 1							
	Address	Family: IP	(2)								
	Route T	ag: 0	0								
	Netmask	: 255.255.2	255.252								
	Next Ho	p: 0.0.0.0									
	Metric:	1									
•	IP Address	s: 10.0.3.0	, Metric	: 1							
	IP Address	5: 10.0.5.0	, Metric	: 2							
000	0 01 00 5	e 00 00 09	ca 08 0	f c6 00	1d 08 00	45 c0		· · · · · · F ·			-
001	0 00 5c 0	0 00 00 00	02 11 c	b c7 0a	00 02 01	e0 00					
002	0 00 09 0	2 08 02 08	00 48 e	6 40 02	92 00 00	00 02	· · · · · · · · · H	•@•••••			
003	0 00 00 0	a 00 01 00	ff ff f	T TC 00	00 00 00	00 00					
005	0 00 00 0	0 00 00 01	00 02 0	0 00 0a	00 05 00	ff ff					
006	0 ff fc 0	0 00 00 00	00 00 0	0 02							
0	2 wireshark		84207_6fD	fdB.pcapn	3		Pa	ckets: 12 · Disp	olayed: 4 (33.3%) Pro	ofile: Default	

图 5-4 RIP 报文结构

步骤 03: RIP 报文字段分析

对抓包点处获取的 RIP 报文进行分析,将分析结果填入表 5-9 中。

表 5-9 RIP 报文分析

序号	字段名称	字段长度	起始位置	字段值	字段表示的信息
1	Command		第 位		
2	Version		第 位		
3	AddressFamily		第 位		
4	RouteTag		第 位		
5	IPAddress		第 位		
6	Netmask		第 位		
7	Next Hop		第 位		
8	Metric		第 位		

步骤 04: RIP 的通信过程分析

①使用 Host-1 对 Host-8 进行路由跟踪测试,记录测试路径。

②删除 R-1 与 R-3 之间的链路。

③重新使用 Host-1 对 Host-8 进行路由跟踪测试,记录测试路径。

④观测 RIP 数据包的变化并进行记录。

实验考核要求:

- 考核点 5-8:将两次测试结果填写到实验报告册。
- 考核点 5-9:将 RIP 数据包的变化填写到实验报告册。

任务 3: 使用 OSPF 搭建网络

扫码看演示

图 5-5 网络拓扑

步骤 01: 网络规划 ①拓扑结构,如图 5-5 所示。 ②拓扑说明

表 5-10 主机地址规划表					
设备	设备类型	规格型号	备注		
Host-1~Host-8	终端主机				
SW-1~SW-4	二层交换机	CISCO C3640 (二层模块)			
RS-1~RS-2	路由交换机	CISCO C3640			
R-1~R-4	路由器	CISCO C7200			

表 5-11 交换机接口与 VLAN 规划表

交换机	接口	VLANID	连接设备	接口类型
SW-1	f0/1	11	Host-1	Access
SW-1	f0/2	12	Host-2	Access
SW-1	f0/0		RS-1	Trunk
SW-2	f0/1	11	Host-3	Access
SW-2	f0/2	12	Host-4	Access
SW-2	f0/0		RS-1	Trunk
SW-3	f0/1	11	Host-5	Access
SW-3	f0/2	12	Host-6	Access
SW-3	f0/0		RS-2	Trunk
SW-4	f0/1	11	Host-7	Access
SW-4	f0/2	12	Host-8	Access
SW-4	f0/0		RS-2	Trunk
RS-1	f0/1		SW-1	Trunk
RS-1	f0/2		SW-2	Trunk
RS-1	f0/0	100	RS-2	Access
RS-2	f0/1		SW-3	Trunk
RS-2	f0/2		SW-4	Trunk
RS-2	f0/0	100	RS-1	Access

表 5-12 主机地址规划表

主机	IP 地址/子网掩码	网关	接入位置	所属 VLANID
Host-1	172.16.64.1 /24	172.16.64.254	SW-1 f0/1	11
Host-2	172.16.65.1 /24	172.16.65.254	SW-1 f0/2	12
Host-3	172.16.64.2 /24	172.16.64.254	SW-2 f0/1	11
Host-4	172.16.65.2 /24	172.16.65.254	SW-2 f0/2	12

信息管理与信息系统教研室 / 阮晓龙 / 13938213680 / 第 11 页

Host-5	192.168.64.1 /24	192.168.64.254	SW-3 f0/1	11
Host-6	192.168.65.1 /24	192.168.65.254	SW-3 f0/2	12
Host-7	192.168.64.2 /24	192.168.64.254	SW-4 f0/1	11
Host-8	192.168.65.2 /24	192.168.65.254	SW-4 f0/2	12

表 5-13 路由接口地址规划表

设备名称	接口名称	接口地址	备注
RS-1	VLAN11	172.16.64.254 /24	VLAN11 的 SVI
RS-1	VLAN12	172.16.65.254 /24	VLAN12 的 SVI
RS-1	VLAN100	10.0.1.2 /30	VLAN100 的 SVI
RS-2	VLAN11	192.168.64.254 /24	VLAN11 的 SVI
RS-2	VLAN12	192.168.65.254 /24	VLAN12 的 SVI
RS-2	VLAN100	10.0.7.2 /30	VLAN100 的 SVI
R-1	e1/0	10.0.5.1 /30	
R-1	e1/1	10.0.6.1 /30	
R-1	e1/2	10.0.3.2/30	
R-2	e1/0	10.0.1.1 /30	
R-2	e1/1	10.0.2.1 /30	
R-2	e1/2	10.0.3.1 /30	
R-3	e1/0	10.0.5.2 /30	
R-3	e1/1	10.0.2.2 /30	
R-3	e1/2	10.0.4.2 /30	
R-4	e1/0	10.0.7.1	
R-4	e1/1	10.0.6.2	
R-4	e1/2	10.0.4.1	

③路由规划

表 5-14 路由规划表

路由设备	路由类型
RS-1~RS-2	OSPF
R-1~R-4	OSPF

步骤 02: 在 GNS3 中部署网络

在 GNS3 中, 按照网络规划创建拓扑, 如图 5-6 所示。

步骤 03: AREA1 部分网络配置

①按照表 5-12 中 IP 地址规划,设置 Host-1~Host-8 的 IP 地址和网关
②参照 RIP 实验中的配置,根据表 5-10 中规划完成交换机 SW-1, SW-2 的配置。

③配置路由交换机 RS-1

参考命令:

//创建 VLAN11、VLAN12、VLAN100 RS-1#vlan database RS-1(vlan)#vlan 11 RS-1(vlan)#vlan 12 RS-1(vlan)#vlan 100 //退出 VLAN 数据库模式,至特权模式 RS-1(vlan)#exit RS-1# //进入配置模式 RS-1#configure terminal //将接口 f0/1 配置为 trunk 模式, 封装标准为 802.1Q RS-1(config)#interface f0/1 RS-1(config-if)#switchport mode trunk RS-1(config-if)#switchport trunk encapsulation dot1q RS-1(config-if)#no shutdown RS-1(config-if)#exit RS-1(config)# //将接口 f0/2 配置为 trunk 模式, 封装标准为 802.1Q RS-1(config)#interface f0/2 RS-1(config-if)#switchport mode trunk RS-1(config-if)#switchport trunk encapsulation dot1q RS-1(config-if)#no shutdown RS-1(config-if)#exit RS-1(config)# //将接口 f0/0 配置为 Access 模式,属于 VLAN100 RS-1(config)#interface f0/0 RS-1(config-if)#switchport mode access RS-1(config-if)#switchport access vlan100 RS-1(config-if)#no shutdown RS-1(config-if)#exit RS-1(config)#

//开启路由功能 RS-1(config)#ip routing //为 VLAN11 的 SVI 接口配置 IP 地址、子网掩码 RS-1(config)#interface vlan 11 RS-1(config-if)#ip address 172.16.64.254 255.255.255.0 RS-1(config-if)#exit RS-1(config)#interface vlan 12 RS-1(config-if)#ip address 172.16.65.254 255.255.255.0 RS-1(config-if)#exit RS-1(config)#interface vlan 100 RS-1(config-if)#ip address 10.0.1.2 255.255.255.252 RS-1(config-if)#exit RS-1(config)#router ospf 1 #配置 OSPF RS-1(config-router)#network 10.0.1.0 255.255.255.252 area1 RS-1(config-router)#network 172.16.64.0 255.255.255.0 area 1 RS-1#write

步骤 04: AREA1 部分网络联通性测试

按照表 5-14 中测试用例,使用 PING 命令进行 NET-A 部分的主机间通信测试。

表 5-15 NET-A 网络主机通信测试

源主机	目的主机	通信结果
Host-1	Host-2	
Host-1	Host-3	
Host-1	Host-4	
Host-2	Host-3	
Host-2	Host-4	
Host-3	Host-4	

实验考核要求:

● 考核点 5-10:通信测试结果填写到实验报告册。

步骤 05: AREA2 部分网络配置

参照 AREA1 部分的网络配置,根据网络规划,完成 AREA2 部分的网络配置。

步骤 06: AREA2 部分网络联通性测试

表 5-16 NET-B 网络主机通信测试

源主机	目的主机	通信结果
Host-5	Host-6	
Host-5	Host-7	
Host-5	Host-8	
Host-6	Host-7	
Host-6	Host-8	

Host-7	Host-8	

实验考核要求:

● 考核点 5-11: 通信测试结果填写到实验报告册。

● 考核点 5-12: 路由交换机 RS-2 的配置命令填写到实验报告册。

步骤 07:路由器配置

①路由器 R-1 配置

参考命令:

R-1#configure terminal #进入配置模式 R-1(config)#ip routing R-1(config)#interface e1/0 R-1(config)#no shutdown R-1(config-if)#ip address 10.0.5.1 255.255.255.252 #配置 e1/0 的 IP 地址 R-1(config-if)#exit R-1(config)#interface e1/1 R-1(config)#no shutdown R-1(config-if)#ip address 10.0.6.1 255.255.255.252 R-1(config-if)#exit R-1(config)#interface e1/2 R-1(config)#no shutdown R-1(config-if)#ip address 10.0.3.2 255.255.255.252 R-1(config-if)#exit R-1(config)#router ospf 1 #配置 OSPF R-1(config-router)#network 10.0.5.0 255.255.255.252 area 0 R-1(config-router)#network 10.0.6.0 255.255.255.252 area 0 R-1(config-router)#network 10.0.3.0 255.255.255.252 area 0 #配置 rip 网络 R-1(config-router)#exit R-1(config)#exit R-1#write

②路由器 R-2 配置

参考命令:

R-2#configure terminal #进入配置模式 R-2(config)#ip routing R-2(config)#interface e1/0 R-2(config)#no shutdown R-2(config-if)#ip address 10.0.1.1 255.255.255.252 #配置 e1/0 的 IP 地址 R-2(config-if)#exit R-2(config)#interface e1/1 R-2(config)#no shutdown R-2(config-if)#ip address 10.0.2.1 255.255.255.252 R-2(config-if)#exit R-2(config-if)#exit R-2(config)#interface e1/2 R-2(config)#no shutdown R-2(config-if)#ip address 10.0.3.1 255.255.255.252 R-2(config-if)#exit R-2(config)#router ospf 1 #配置 OSPF R-2(config-router)#network 10.0.1.0 255.255.255.252 area 1 R-2(config-router)#network 10.0.2.0 255.255.255.252 area 0 R-2(config-router)#network 10.0.3.0 255.255.255.252 area 0

③路由器 R-3、R-4 配置

参照 R-1、R-2 部分的网络配置,根据网络规划,完成 R-3、R-4 的网络配置。

步骤 08: 全网通信测试

源主机	目的主机	通信结果
Host-1	Host-2	
Host-1	Host-3	
Host-1	Host-4	
Host-1	Host-5	
Host-1	Host-6	
Host-1	Host-7	
Host-1	Host-8	

表 5-17 全网主机通信测试

实验考核要求:

● 考核点 5-13: 通信测试结果填写到实验报告册。

● 考核点 5-14: 路由器 R-3 的配置命令填写到实验报告册。

任务 4: OSPF 通信分析

步骤 01:设置抓包点,启动 Wireshark 进行抓包 在 R-1 与 R-2 之间设置抓包点,如图 5-7 所示,启动 Wireshark 抓包。

图 5-7 设置抓包点

步骤 02: 记录抓包点处的报文

等待一定时间,在 Wireshark 中输入 ospf,筛选出 OSPF 的数据包,选择其中一条 Hell o 报文进行分析,如图 5-8 所示。

		*- [R	-2 Ethernet1/2 to R-1 Ethe	rnet1/2]		0 😣
<u>F</u> ile	Edit View Go	Capture Analyze Statistics	Telephon <u>y</u> <u>W</u> ireless <u>T</u> o	ools <u>H</u> elp		
	📕 🙋 🎯 🗋	🗎 🖹 🕼 🔍 🗸 💙	🗣 🛏 💻 📃			
os	pf				×	•
No.	Time	Source	Destination	Protocol	Length Info	
	3 1.073476	10.0.3.1	224.0.0.5	OSPF	94 Hello Packet	
	5 2.939661	10.0.3.2	10.0.3.1	0SPF	78 DB Description	
	6 2.939688	10.0.3.2	224.0.0.5	0SPF	94 Hello Packet	
	7 2.949418	10.0.3.1	10.0.3.2	OSPF	118 DB Description	
	8 2.960344	10.0.3.2	10.0.3.1	OSPF	98 DB Description	
4						•
• Op	en Shortest Pat OSPF Header Version: 2	h First				
	Message Type Packet Lengt	: Hello Packet (1) h: 48				
	Source OSPF	Router: 10.0.6.1				
	Area ID: 0.0	.0.0 (Backbone)				
	Checksum: Ox	J499 [correct]				
	Auth Data (n	111 (0)				
-	OSPE Hello Pack	ket				
	Network Mask	: 255.255.255.252				
	Hello Interv	al [sec]: 10				
	Options: 0x1	2, (L) LLS Data block,	(E) External Routing			
	Router Prior	ity: 1				
	Router Dead	Interval [sec]: 40				
	Designated R	outer: 10.0.3.2				
	Backup Desig	nated Router: 10.0.3.1				
	Active Neigh	bor: 10.0.3.1				
	OSPF LLS Data B	3lock				
0000	01 00 5e 00 0	00 05 ca 07 11 09 00 :	1e 08 00 45 c0	••••••E•		
0010	00 50 00 0d	90 00 01 59 cb 81 0a (00 03 02 e0 00 ·P··	····Y		
0020	00 05 02 01	30 30 0a 00 06 01 00 0	00 00 00 b4 99	• 🛛 • • • • • • • • • • •		
	00 00 00 00	30 00 00 00 00 00 ff 1	tt tt tc 00 0a			-
0 ?	Open Shortest P	ath First: Protocol		Packets: 122 · Disc	laved: 85 (69.7%) Profile: [Default

图 5-8 OSPF Hello 报文结构

步骤 03: OSPF Hello 报文字段分析

对抓包点处获取的 OSPF Hello 报文进行分析,将分析结果填入表 5-18 中。

序号	字段名称	字段长度	起始位置	字段值	字段表示的信息
1	Version		第 位		
2	MessageType		第 位		
3	PacketLength		第 位		

表 5-18 OSPF Hello 报文分析

4	Source OSPF Router	第	位	
5	Area ID	第	位	
6	Checksum	第	位	
7	Auth Type	第	位	
8	AuthData	第	位	
9	Network Mask	第	位	
10	hello interval	第	位	
11	Router Priority	第	位	
12	Router Dead interval	第	位	
13	Designated Router	第	位	
14	Backup Designated Router	第	位	
15	Active Neighbor	第	位	

步骤 04: OSPF 路由更新报文分析

继续在抓包点处抓包,此时删除 R-1 与 R-3 之间的链路,选择其中一条 LSUpdate 报 文进行分析,内容如图 5-9 所示。

图 5-9 OSPF LSUpdate 报文结构

对抓包点处获取的 OSPF LSUpdate 报文进行分析,将分析结果填入表 5-19 中。

表 5-19 OSPF LSUpdate 报文分析

序号	字段名称	字段长度	起始位置	字段值	字段表示的信息
----	------	------	------	-----	---------

1	Version	第	位	
2	MessageType	第	位	
3	PacketLength	第	位	
4	Source OSPF Router	第	位	
5	Area ID	第	位	
6	Checksum	第	位	
7	Auth Type	第	位	
8	AuthData	第	位	

步骤 05: OSPF 的通信过程分析

①使用 Host-1 对 R-3 进行路由跟踪测试,记录测试路径.

②删除 R-2 与 R-3 中间的链路。

③重新使用 Host-1 对 R-3 进行路由跟踪测试,记录测试路径。

④观测 OSPF 数据包的变化并描述路由的更新过程。

实验考核要求:

- 考核点 5-15:将两次测试结果填写到实验报告册。
- 考核点 5-16:将 0PSF 更新数据包分析填写到实验报告册。

八、实验分析

1、路由协议

- (1) 动态路由协议与静态路由协议有哪些不同?
- (2)为什么要使用动态路由协议?

2、内部网关协议 EGP

- (1) RIP 和 OSPF 的不同?
- (2)除了 RIP、OSPF 外,还有哪些内部网关协议?

3、构建更大的网络互联

(1) 在实验中有 RIP 构建的园区网,也有 OSPF 构建的园区网,如何使两个不同的园 区网进行互相通信?网络需要进行哪些调整?