实验五: 使用路由器组网

一、实验目的

- 1、了解路由器;
- 2、掌握路由器的工作原理;
- 3、掌握基于 RIP 构建园区网;
- 4、掌握基于 OSPF 构建园区网。

二、实验学时

2 学时

三、实验类型

综合型

四、实验需求

1、硬件

每人配备计算机1台,不低于双核 CPU、8G 内存、500GB 硬盘。

2、软件

推荐 Ubuntu Desktop 操作系统,安装 GNS 3 仿真软件。 支持 Windows 操作系统,安装 GNS 3 仿真软件。 报文分析使用 Wireshark。

3、网络

计算机使用固定 IP 地址接入局域网,并支持对互联网的访问。

4、工具

无。

五、实验任务

- 1、完成基于 RIP 构建园区网;
- 2、完成 RIP 通信过程分析;
- 3、完成基于 OSPF 构建园区网;
- 4、完成 OSPF 通信过程分析。

六、实验内容及步骤

任务 1: 使用 RIP 构建园区网(15分)

步骤 01: 网络规划

①拓扑结构,如图 5-1 所示。

图 5-1 网络拓扑

②拓扑说明

表 5-1 主机地址规划

设备	设备类型	规格型号	备注
Host-1~Host-8	终端主机		
SW-1~SW-4	二层交换机	CISCO C3640 (二层模块)	
RS-1~RS-2	路由交换机	CISCO C3640	
R-1~R-3	路由器	CISCO C7200	

表 5-2 交换机接口与 VLAN 规划

交换机	接口	VLANID	连接设备	接口类型
SW-1	f0/1	11	Host-1	Access
SW-1	f0/2	12	Host-2	Access
SW-1	f0/0		RS-1	Trunk
SW-2	f0/1	11	Host-3	Access
SW-2	f0/2	12	Host-4	Access
SW-2	f0/0		RS-1	Trunk
SW-3	f0/1	11	Host-5	Access
SW-3	f0/2	12	Host-6	Access
SW-3	f0/0		RS-2	Trunk
SW-4	f0/1	11	Host-7	Access
SW-4	f0/2	12	Host-8	Access
SW-4	f0/0		RS-2	Trunk

实验指导书-计算机网络原理(GNS3.2025)

RS-1	f0/1		SW-1	Trunk
RS-1	f0/2		SW-2	Trunk
RS-1	f0/0	100	RS-2	Access
RS-2	f0/1		SW-3	Trunk
RS-2	f0/2		SW-4	Trunk
RS-2	f0/0	100	RS-1	Access

表 5-3 主机地址规划

主机	IP 地址/网络位	网关	接入位置	所属 VLANID
Host-1	172.16.64.1 /24	172.16.64.254	SW-1 f0/1	11
Host-2	172.16.65.1 /24	172.16.65.254	SW-1 f0/2	12
Host-3	172.16.64.2 /24	172.16.64.254	SW-2 f0/1	11
Host-4	172.16.65.2 /24	172.16.65.254	SW-2 f0/2	12
Host-5	192.168.64.1 /24	192.168.64.254	SW-3 f0/1	11
Host-6	192.168.65.1 /24	192.168.65.254	SW-3 f0/2	12
Host-7	192.168.64.2 /24	192.168.64.254	SW-4 f0/1	11
Host-8	192.168.65.2 /24	192.168.65.254	SW-4 f0/2	12

表 5-4 路由接口地址规划

设备名称	接口名称	接口地址	备注
RS-1	VLAN11	172.16.64.254 /24	VLAN11 的 SVI
RS-1	VLAN12	172.16.65.254 /24	VLAN12 的 SVI
RS-1	VLAN100	10.0.1.2 /30	VLAN100 的 SVI
RS-2	VLAN11	192.168.64.254 /24	VLAN11的 SVI
RS-2	VLAN12	192.168.65.254 /24	VLAN12的 SVI
RS-2	VLAN100	10.0.5.2 /30	VLAN100 的 SVI
R-1	e1/1	10.0.2.2 /30	
R-1	e1/0	10.0.4.2 /30	
R-2	e1/0	10.0.1.1 /30	
R-2	e1/1	10.0.2.1 /30	
R-2	e1/2	10.0.3.1 /30	
R-3	e1/0	10.0.5.1 /30	
R-3	e1/1	10.0.4.1 /30	
R-3	e1/2	10.0.3.2 /30	

③路由规划

表 5-5 路由规划

路由设备	路由类型
RS-1~RS-2	RIPv2
R-1~R-3	RIPv2

步骤 02: 在 GNS3 中部署网络

在 GNS3 中, 按照网络规划创建拓扑, 如图 5-2 所示。

图 5-2 GNS3 网络结构

步骤 03: NET-A 部分网络配置

①按照表 5-3 中 IP 地址规划,设置 Host-1~Host-8 的 IP 地址和网关。

②配置交换机 SW-1

参考命令:

//进入 VLAN 数据库模式 SW-1# vlan database //创建 VLAN11、VLAN12、VLAN100 SW-1(vlan)#vlan 11 SW-1(vlan)#vlan 12 SW-1(vlan)#vlan 100 //退出 VLAN 数据库模式, 至特权模式 SW-1(vlan)#exit SW-1# //进入配置模式 SW-1#configure terminal //进入接口配置模式 SW-1(config)# interface f0/1 //设置接口为 Access 模式 SW-1(config-if)# switchport mode access //设置设置接口所属 VLAN 为 VLAN11 SW-1(config-if)# switchport access vlan 11 SW-1(config-if)# no shutdown SW-1(config-if)# exit SW-1(config)# interface f0/2

SW-1(config-if)# switchport mode access SW-1(config-if)# switchport access vlan 12 SW-1(config-if)# no shutdown SW-1(config-if)# exit SW-1(config)# SW-1(config)# interface f0/0 //设置接口为 Trunk 模式 SW-1(config-if)# switchport mode trunk //设置 Trunk 封装标准为 802.1q, Trunk 有两种封装标准, 一种是 Cisco 私//有的 ISL, 一种是行业标准 802.1Q, 一般采用 802.1Q 实现封装 SW-1(config-if)# switchport trunk encapsulation dot1q SW-1(config-if)# no shutdown SW-1(config-if)# exit SW-1(config)# exit //保存配置 SW-1# write

③配置交换机 SW-2

根据表 5-2 中规划,交换机 SW-2 接口和 VLAN 与 SW-1 相同,重复 SW-1 配置操作, 完成 SW-2 的配置。

④配置路由交换机 RS-1

参考命令:

//创建 VLAN11、VLAN12、VLAN100 RS-1#vlan database RS-1(vlan)#vlan 11 RS-1(vlan)#vlan 12 RS-1(vlan)#vlan 100 //退出 VLAN 数据库模式,至特权模式 RS-1(vlan)#exit RS-1# //进入配置模式 RS-1#configure terminal //将接口 f0/1 配置为 trunk 模式, 封装标准为 802.1Q RS-1(config)#interface f0/1 RS-1(config-if)#switchport mode trunk RS-1(config-if)#switchport trunk encapsulation dot1q RS-1(config-if)#no shutdown RS-1(config-if)#exit RS-1(config)# //将接口 f0/2 配置为 trunk 模式, 封装标准为 802.1Q RS-1(config)#interface f0/2 RS-1(config-if)#switchport mode trunk RS-1(config-if)#switchport trunk encapsulation dot1q RS-1(config-if)#no shutdown RS-1(config-if)#exit RS-1(config)# //将接口 f0/0 配置为 Access 模式,属于 VLAN100 RS-1(config)#interface f0/0 RS-1(config-if)#switchport mode access RS-1(config-if)#switchport access vlan100 RS-1(config-if)#no shutdown RS-1(config-if)#exit RS-1(config)# //开启路由功能 RS-1(config)#ip routing

//为 VLAN11 的 SVI 接口配置 IP 地址、子网掩码 RS-1(config)#interface vlan 11 RS-1(config-if)#ip address 172.16.64.254 255.255.255.0 RS-1(config-if)#exit RS-1(config)#interface vlan 12 RS-1(config-if)#ip address 172.16.65.254 255.255.255.0 RS-1(config-if)#exit RS-1(config)#interface vlan 100 RS-1(config-if)#ip address 10.0.1.2 255.255.255.252 RS-1(config-if)#exit RS-1(config)#router rip #配置 rip RS-1(config-router)#version 2 RS-1(config-router)#network 10.0.0.0 RS-1(config-router)#network 172.16.0.0 RS-1#write

步骤 04: NET-A 部分网络联通性测试

按照表 5-6 中测试用例,使用 PING 命令进行 NET-A 部分的主机间通信测试。

源主机	目的主机	通信结果
Host-1	Host-2	
Host-1	Host-3	
Host-1	Host-4	
Host-2	Host-3	
Host-2	Host-4	
Host-3	Host-4	

表 5-6 NET-A 网络主机通信测试

步骤 05: NET-B 部分网络配置

参照 NET-A 部分的网络配置,根据网络规划,完成 NET-B 部分的网络。

步骤 06: NET-B 部分网络联通性测试

表 5-7 NET-B 网络主机通信测试

源主机	目的主机	通信结果
Host-5	Host-6	
Host-5	Host-7	
Host-5	Host-8	
Host-6	Host-7	
Host-6	Host-8	
Host-7	Host-8	

步骤 07:路由器配置

①路由器 R-1 配置

参考命令:

R-1#configure terminal

#进入配置模式 R-1(config)#ip routing R-1(config)#interface e1/0 R-1(config)#no shutdown R-1(config-if)#ip address 10.0.4.2 255.255.255.252 #配置 e1/0 的 IP 地址 R-1(config-if)#exit R-1(config)#interface e1/1 R-1(config)#no shutdown R-1(config-if)#ip address 10.0.2.2 255.255.255.252 R-1(config-if)#exit R-1(config)#router rip #配置 rip R-1(config-router)#version 2 #rip 版本为 v2 R-1(config-router)#network 10.0.00 #配置 rip 网络 R-1(config-router)#exit R-1(config)#exit R-1#write

②路由器 R-2 配置

参考命令:

R-2#configure terminal #进入配置模式 R-2(config)#ip routing R-2(config)#interface e1/0 R-2(config)#no shutdown R-2(config-if)#ip address 10.0.1.1 255.255.255.252 #配置 e1/0 的 IP 地址 R-2(config-if)#exit R-2(config)#interface e1/1 R-2(config)#no shutdown R-2(config-if)#ip address 10.0.2.1 255.255.255.252 R-2(config-if)#exit R-2(config)#interface e1/2 R-2(config)#no shutdown R-2(config-if)#ip address 10.0.3.1 255.255.255.252 R-2(config-if)#exit R-2(config)#router rip #配置 rip R-2(config-router)#version 2 #rip 版本为 v2 R-2(config-router)#network 10.0.0.0 #配置 rip 网络 R-2(config-router)#exit R-2(config)#exit R-2#write

③路由器 R-3 接口配置

参照 R-1、R-2 部分的网络配置,根据网络规划,完成 R-3 的网络配置。

步骤 08: 全网通信测试

表 5-8 全网主机通信测试

源主机	目的主机	通信结果
Host-1	Host-2	
Host-1	Host-3	
Host-1	Host-4	
Host-1	Host-5	
Host-1	Host-6	
Host-1	Host-7	
Host-1	Host-8	

任务 2: RIP 通信过程分析(15分)

步骤 01:设置抓包点,启动 Wireshark 进行抓包 在 R-1 与 R-2 之间设置抓包点,如图 5.3 所示,启动 Wireshark 抓包。

图 5-3 设置抓包点

步骤 02: 记录抓包点处的报文

等待一定时间,在 Wireshark 中输入 rip,筛选出 RIP 的数据包,选择其中一条分析。

步骤 03: RIP 报文字段分析

对抓包点处获取的 RIP 报文进行分析,将分析结果填入表 5-9 中。

序号	字段名称	字段长度	起始位置	字段值	字段表示的信息
1	Command		第 位		
2	Version		第 位		
3	AddressFamily		第 位		
4	RouteTag		第 位		

表 5-9 RIP 报文分析

5	IPAddress	第	位	
6	Netmask	第	位	
7	Next Hop	第	位	
8	Metric	第	位	

步骤 04: RIP 的通信过程分析

①使用 Host-1 对 Host-8 进行路由跟踪测试,记录测试路径。

②删除 R-1 与 R-3 之间的链路。

③重新使用 Host-1 对 Host-8 进行路由跟踪测试,记录测试路径。

④观测 RIP 数据包的变化并进行记录。

任务 3: 使用 OSPF 搭建网络(15 分)

步骤 01: 网络规划

图 5-4 网络拓扑

①拓扑结构,如图 5-4 所示。

②拓扑说明

表 5-10 主机地址规划

设备	设备类型	规格型号	备注
Host-1~Host-8	终端主机		
SW-1~SW-4	二层交换机	CISCO C3640 (二层模块)	
RS-1~RS-2	路由交换机	CISCO C3640	
R-1~R-4	路由器	CISCO C7200	

表 5-11 交换机接口与 VLAN 规划

交换机	接口	VLANID	连接设备	接口类型
SW-1	f0/1	11	Host-1	Access
SW-1	f0/2	12	Host-2	Access

实验指导书-计算机网络原理(GNS3.2025)

SW-1	f0/0		RS-1	Trunk
SW-2	f0/1	11	Host-3	Access
SW-2	f0/2	12	Host-4	Access
SW-2	f0/0		RS-1	Trunk
SW-3	f0/1	11	Host-5	Access
SW-3	f0/2	12	Host-6	Access
SW-3	f0/0		RS-2	Trunk
SW-4	f0/1	11	Host-7	Access
SW-4	f0/2	12	Host-8	Access
SW-4	f0/0		RS-2	Trunk
RS-1	f0/1		SW-1	Trunk
RS-1	f0/2		SW-2	Trunk
RS-1	f0/0	100	RS-2	Access
RS-2	f0/1		SW-3	Trunk
RS-2	f0/2		SW-4	Trunk
RS-2	f0/0	100	RS-1	Access

表 5-12 主机地址规划

主机	IP 地址/网络位	网关	接入位置	所属 VLANID
Host-1	172.16.64.1 /24	172.16.64.254	172.16.64.254 SW-1 f0/1	
Host-2	172.16.65.1 /24	172.16.65.254	SW-1 f0/2	12
Host-3	172.16.64.2 /24	172.16.64.254	172.16.64.254 SW-2 f0/1	
Host-4	172.16.65.2 /24	172.16.65.254	SW-2 f0/2	12
Host-5	192.168.64.1 /24	192.168.64.254	SW-3 f0/1	11
Host-6	192.168.65.1 /24	192.168.65.254	SW-3 f0/2	12
Host-7	192.168.64.2 /24	192.168.64.254 SW-4 f0/1		11
Host-8	192.168.65.2 /24	192.168.65.254	SW-4 f0/2	12

表 5-13 路由接口地址规划

设备名称	接口名称	接口地址	备注
RS-1	VLAN11	172.16.64.254 /24	VLAN11 的 SVI
RS-1	VLAN12	172.16.65.254 /24	VLAN12 的 SVI
RS-1	VLAN100	10.0.1.2 /30	VLAN100的 SVI
RS-2	VLAN11	192.168.64.254 /24	VLAN11的 SVI
RS-2	VLAN12	192.168.65.254 /24	VLAN12 的 SVI
RS-2	VLAN100	10.0.7.2 /30	VLAN100的 SVI

实验指导书-计算机网络原理(GNS3.2025)

R-1	e1/0	10.0.5.1 /30	
R-1	e1/1	10.0.6.1 /30	
R-1	e1/2	10.0.3.2/30	
R-2	e1/0	10.0.1.1 /30	
R-2	e1/1	10.0.2.1 /30	
R-2	e1/2	10.0.3.1 /30	
R-3	e1/0	10.0.5.2 /30	
R-3	e1/1	10.0.2.2 /30	
R-3	e1/2	10.0.4.2 /30	
R-4	e1/0	10.0.7.1	
R-4	e1/1	10.0.6.2	
R-4	e1/2	10.0.4.1	

③路由规划

表 5-14 路由规划

路由设备	路由类型
RS-1~RS-2	OSPF
R-1~R-4	OSPF

步骤 02: 在 GNS3 中部署网络

图 5-5 GNS3 网络结构

在 GNS3 中, 按照网络规划创建拓扑, 如图 5-5 所示

步骤 03: AREA1 部分网络配置 ①按照表 5-12 中 IP 地址规划,设置 Host-1~Host-8 的 IP 地址和网关 ②参照 RIP 实验中的配置,根据表 5-10 中规划完成交换机 SW-1,SW-2 的配置。 ③配置路由交换机 RS-1

参考命令:

//创建 VLAN11、VLAN12、VLAN100 RS-1#vlan database RS-1(vlan)#vlan 11 RS-1(vlan)#vlan 12 RS-1(vlan)#vlan 100 //退出 VLAN 数据库模式, 至特权模式 RS-1(vlan)#exit RS-1# //进入配置模式 RS-1#configure terminal //将接口 f0/1 配置为 trunk 模式, 封装标准为 802.1Q RS-1(config)#interface f0/1 RS-1(config-if)#switchport mode trunk RS-1(config-if)#switchport trunk encapsulation dot1q RS-1(config-if)#no shutdown RS-1(config-if)#exit RS-1(config)# //将接口 f0/2 配置为 trunk 模式, 封装标准为 802.1Q RS-1(config)#interface f0/2 RS-1(config-if)#switchport mode trunk RS-1(config-if)#switchport trunk encapsulation dot1q RS-1(config-if)#no shutdown RS-1(config-if)#exit RS-1(config)# //将接口 f0/0 配置为 Access 模式,属于 VLAN100 RS-1(config)#interface f0/0 RS-1(config-if)#switchport mode access RS-1(config-if)#switchport access vlan100 RS-1(config-if)#no shutdown RS-1(config-if)#exit RS-1(config)# //开启路由功能 RS-1(config)#ip routing //为 VLAN11 的 SVI 接口配置 IP 地址、子网掩码 RS-1(config)#interface vlan 11 RS-1(config-if)#ip address 172.16.64.254 255.255.255.0 RS-1(config-if)#exit RS-1(config)#interface vlan 12 RS-1(config-if)#ip address 172.16.65.254 255.255.255.0 RS-1(config-if)#exit RS-1(config)#interface vlan 100 RS-1(config-if)#ip address 10.0.1.2 255.255.255.252 RS-1(config-if)#exit RS-1(config)#router ospf 1 #配置 OSPF RS-1(config-router)#network 10.0.1.0 255.255.255.252 area1 RS-1(config-router)#network 172.16.64.0 255.255.255.0 area 1 RS-1#write

步骤 04: AREA1 部分网络联通性测试

按照表 5-14 中测试用例,使用 PING 命令进行 NET-A 部分的主机间通信测试。

表 5-15 NET-A 网络主机通信测试

源主机	目的主机	通信结果
Host-1	Host-2	
Host-1	Host-3	
Host-1	Host-4	
Host-2	Host-3	
Host-2	Host-4	
Host-3	Host-4	

步骤 05: AREA2 部分网络配置

参照 AREA1 部分的网络配置,根据网络规划,完成 AREA2 部分的网络配置。

步骤 06: AREA2 部分网络联通性测试

表 5-16 NET-B 网络主机通信测试

源主机	目的主机	通信结果
Host-5	Host-6	
Host-5	Host-7	
Host-5	Host-8	
Host-6	Host-7	
Host-6	Host-8	
Host-7	Host-8	

步骤 07:路由器配置

①路由器 R-1 配置

参考命令:

R-1#configure terminal #进入配置模式 R-1(config)#ip routing R-1(config)#interface e1/0 R-1(config)#no shutdown R-1(config-if)#ip address 10.0.5.1 255.255.255.252 #配置 e1/0 的 IP 地址 R-1(config-if)#exit R-1(config)#interface e1/1 R-1(config)#no shutdown R-1(config-if)#ip address 10.0.6.1 255.255.255.252 R-1(config-if)#exit R-1(config)#interface e1/2 R-1(config)#no shutdown R-1(config-if)#ip address 10.0.3.2 255.255.255.252 R-1(config-if)#exit R-1(config)#router ospf 1 #配置 OSPF R-1(config-router)#network 10.0.5.0 255.255.255.252 area 0 R-1(config-router)#network 10.0.6.0 255.255.255.252 area 0 R-1(config-router)#network 10.0.3.0 255.255.255.252 area 0 #配置 rip 网络 R-1(config-router)#exit R-1(config)#exit R-1#write

②路由器 R-2 配置

参考命令:

R-2#configure terminal #进入配置模式 R-2(config)#ip routing R-2(config)#interface e1/0 R-2(config)#no shutdown R-2(config-if)#ip address 10.0.1.1 255.255.255.252 #配置 e1/0 的 IP 地址 R-2(config-if)#exit R-2(config)#interface e1/1 R-2(config)#no shutdown R-2(config-if)#ip address 10.0.2.1 255.255.255.252 R-2(config-if)#exit R-2(config)#interface e1/2 R-2(config)#no shutdown R-2(config-if)#ip address 10.0.3.1 255.255.255.252 R-2(config-if)#exit R-2(config)#router ospf 1 #配置 OSPF R-2(config-router)#network 10.0.1.0 255.255.255.252 area 1 R-2(config-router)#network 10.0.2.0 255.255.255.252 area 0 R-2(config-router)#network 10.0.3.0 255.255.255.252 area 0 R-2(config-router)#exit R-2(config)#exit R-2#write

③路由器 R-3、R-4 配置

参照 R-1、R-2 部分的网络配置,根据网络规划,完成 R-3、R-4 的网络配置。

步骤 08: 全网通信测试

源主机	目的主机	通信结果
Host-1	Host-2	
Host-1	Host-3	
Host-1	Host-4	
Host-1	Host-5	
Host-1	Host-6	
Host-1	Host-7	
Host-1	Host-8	

表 5-17 全网主机通信测试

任务 4: OSPF 通信分析(15分)

步骤 01:设置抓包点,启动 Wireshark 进行抓包 在 R-1 与 R-2 之间设置抓包点,如图 5-6 所示,启动 Wireshark 抓包。

图 5-6 设置抓包点

步骤 02: 记录抓包点处的报文

等待一定时间,在 Wireshark 中输入 ospf,筛选 OSPF 数据包,选择其中一条 Hello 报 文进行分析。

步骤 03: OSPF Hello 报文字段分析

对抓包点处获取的 OSPF Hello 报文进行分析,将分析结果填入表 5-18 中。

表 5-18 OSPF Hello 报文分析

序号	字段名称	字段长度	起始位置	字段值	字段表示的信息
1	Version		第 位		
2	MessageType		第 位		
3	PacketLength		第 位		
4	Source OSPF Router		第 位		
5	Area ID		第 位		
6	Checksum		第位		
7	Auth Type		第 位		
8	Auth Data		第 位		
9	Network Mask		第位		
10	Hello Interval		第 位		
11	Router Priority		第位		
12	Router Dead Interval		第 位		

13	Designated Router	第	位	
14	Backup Designated Router	第	位	
15	Active Neighbor	第	位	

步骤 04: OSPF 路由更新报文分析

继续在抓包点处抓包,此时删除 R-1 与 R-3 之间的链路,选择其中一条 LSUpdate 报 文进行分析。

对抓包点处获取的 OSPF LSUpdate 报文进行分析,将分析结果填入表 5-19 中。

序号	字段名称	字段长度	起始位置	字段值	字段表示的信息
1	Version		第 位		
2	Message Type		第 位		
3	Packet Length		第 位		
4	Source OSPF Router		第 位		
5	Area ID		第 位		
6	Checksum		第 位		
7	Auth Type		第 位		
8	Auth Data		第 位		

表 5-19 OSPF LSUpdate 报文分析

步骤 05: OSPF 的通信过程分析

①使用 Host-1 对 R-3 进行路由跟踪测试,记录测试路径.

②删除 R-2 与 R-3 中间的链路。

③重新使用 Host-1 对 R-3 进行路由跟踪测试,记录测试路径。

④观测 OSPF 数据包的变化并描述路由的更新过程。

七、实验考核

实验考核从【完成维度】和【时间维度】两个维度进行评分。

1、【完成维度】考核

本维度主要考核学生完成实验的程度以及对实验内容的理解程度,包括【任务完成度】 【实验报告】和【回答问题】三个部分。具体如下:

(1) 任务完成度(60分)

学生在完成实验后,要当面提交教师检查实验结果。教师检查每个实验任务的完成情况, 并根据实验指导书中每个任务的分值,给出任务完成度的分数。本项目满分 60 分。 (2)回答问题(40分)

学生在完成实验后,要当面提交教师检查实验结果,并回答教师提问。教师根据学生回 答情况评分。本项目满分 40 分。

【注意】: 教师提问时,可参考"八、思考与讨论"中的问题,从中随机选取 2-3 个问题进行提问。

2、【时间维度】考核

本维度主要考核学生完成实验的时间,具体如下:

(1) 当堂提交(100 分起评)

本实验的实验课当堂提交并通过【完成维度】考核的,从100分起评。

(2) 一周内提交(90 分起评)

本实验的实验课结束一周内提交并通过【完成维度】考核的,从 90 分起评,即本次实验考核最高 90 分。

(3) 一周后提交(80 分起评)

本实验的实验课结束一周后提交并通过【完成维度】考核的,从 80 分起评,即本次实 验考核最高 80 分。

(4) 未提交(0分)

本学期教学工作结束时,仍未提交的,本次实验考核0分。

八、思考与讨论

学生在做实验时,要结合实验内容和过程,讨论分析以下问题,以备教师提问

- 1. 静态路由和动态路由各有什么特点? (各谈至少3个特点)
- 任务1中,在配置路由器(例如R-2)和路由交换机(例如RS-1)之间互连的接口 时,结合实践操作,说说此处路由器接口的配置与路由交换机接口的配置有何区别?
- 3. 本实验任务1和任务3中,在配置路由器(例如R-2)时,都使用了 network 命令, 请自行查询相关资料,理解并谈谈 network 命令的作用。结合自己的操作实践,对 比分析使用 RIP 构建园区网和使用 OSPF 构建园区网时,在路由器上配置 network 命令时,配置命令有何区别?
- 本实验任务1步骤07中,配置完路由器以后,查看一下R-2的路由表信息(具体 命令自行查询相关资料),给老师说明R-2的路由表中,哪些路由记录是直连路由, 哪些路由记录是动态路由,并分别说明这些直连路由和动态路由的生成原因。
- 5. 本实验任务 1 步骤 07 中,配置完路由器以后,假设执行 Host-1 PING Host-5,分析当 Host-1 发出的 ICMP 回显请求报文到达 R-2 时,R-2 依据本路由表中的哪条路由转发该 ICMP 回显请求报文?给老师展示 R-2 的路由表内容(具体操作命令自行查阅相关资料),并指出该路由,说明该路由记录中各字段的含义。
- 6. 本实验任务 2 步骤 03 中,结合本课程第 4 章网络层的教学课件(可从课程网站获取)中的 RIP 报文的结构图,分析所抓取到的 RIP 报文的各字段的含义,并给老师 汇报。
- 7. 本实验任务 2 步骤 04 中,针对图 5-3 所示网络拓扑,一是对比 R-1 和 R-3 之间的 链路"断开"前后,Host-1 访问 Host-8 的路径是否有变化? 二是保持 R-1 和 R-3 之

间的链路正常,对比 R-2 和 R-3 之间的链路"断开"前后,Host-1 访问 Host-8 的路径是否有变化? 三是假设图 5-3 所示网络配置的是静态路由,对比 R-2 和 R-3 之间的链路"断开"前后,Host-1 访问 Host-8 的路径是否有变化?针对上述 3 种情况,结合你的实际操作结果,谈谈你的理解分析。

- 本实验任务 2 步骤 04 中,在 R-2 和 R-1 之间设置抓包点,对比 R-1 和 R-3 之间的 链路"断开"前后,在 R-2 和 R-1 之间抓取的 RIP 报文有什么变化?结合实际操 作,谈谈你的实验结果并分析原因。
- 9. 本实验任务 3 的网络拓扑(图 5-4)中,设置有 area0、area1、area2,结合任务 3 中步骤 03、步骤 05、步骤 07 里针对 area1、area2、area0 的配置,谈谈你对 OSPF 的应用中, area(区域)的理解。例如,为什么配置 RIP 时,不需要设置 area?为什么应用 OSPF 时,需要设置 area?在 OSPF 网络中, area 设置有什么特点?在通信上有什么特点?
- 10. 本实验任务 3 中,当完成本任务全部配置后,假设执行 Host-1 PING Host-5,分析 当 Host-1 发出的 ICMP 回显请求报文到达 RS-1 时,RS-1 依据本路由表中的哪条 路由转发该 ICMP 回显请求报文?给老师展示 RS-1 的路由表内容(具体操作命令 自行查阅相关资料),并指出该路由,说明该路由记录中各字段的含义。若 Host-1 发出的 ICMP 回显请求报文到达 R-2 时呢? (注意体会"当数据包到达路由器时,路由器根据自己的路由表对数据包进行转发"

(汪息仲会" 当 数 据 包 到 达 路 田 奋 时 , 路 田 奋 根 掂 自 亡 的 路 田 衣 刈 剱 掂 包 进 行 转 反 " 的 含 义)

- 11. 本实验任务 4 步骤 02 中,要求抓取一条 Hello 报文, OSPF 的 Hello 报文有什么作用? OSPF 还有哪些类型的报文,分别有什么作用?
- 12. 本实验任务 4 步骤 03 中,分析 Hello 报文的结构,给老师汇报每个字段的含义。
- 13. 本实验任务 4 步骤 04 中,在指定的抓包点为什么能抓取到一条 LSUpdate 报文? 该报文是哪个设备发的? 该报文的作用是什么?
- 14. 本实验任务 4 步骤 05 中,使用 Host-1 访问 R-3 时,你所使用的代表 R-3 的 IP 地 址是什么? 该地址所代表的具体位置是什么? 要判断 Host-1 访问 R-3 的路径,可 以采用什么方法? 至少说出 2 种。